Camera

Computer Graphics

Yu-Ting Wu

(Some of this slides are borrowed from Prof. Yung-Yu Chuang)

Outline

- Introduction to real-world cameras
- Introduction to computer graphics cameras
- Camera space and camera transformation
- Projective cameras
- OpenGL Implementation

Recap.

- So far, we have introduced how to represent a virtual 3D world

Sofa, plant, bookshelf, and the room vertex data \rightarrow (vertex buffer) vertex adjacency $\boldsymbol{\rightarrow}$ (index buffer) defined in Object Space

Objects are put into a shared World Space by transformation (translation, scaling, rotation)

3D virtual world

Recap. (cont.)

- In computer graphics, we generate an image from a virtual 3D world
- We are going to introduce the virtual camera and its projection used to render the scene

3D virtual world

rendered image

Recap. (cont.)

- Two ways for generating synthetic images

Ray tracing
virtual film

virtual camera

Rasterization

virtual camera

Spoiler

- There are other spaces
- We will introduce camera space, clip space, and NDC today
for assisting rendering

1. LOCAL SPACE

2. view space

3. CLIP SPACE
for building scene
Object Space
(Local Space)

World Space

Camera Space
(View, Eye Space)

Clip Space

Normalized Device Coordinate (NDC)

Screen Space

Outline

- Introduction to real-world cameras
- Introduction to computer graphics cameras
- Camera space and camera transformation
- Projective cameras
- OpenGL Implementation

Camera Trail

Put a piece of film in front of an object

Pinhole Camera

pinhole camera

Add a barrier to block off most of the rays

- It reduces blurring
- The pinhole is known as the aperture
- The image is inverted

Pinhole Camera (cont.)

- Shrink the aperture

0.6 mm

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effect

Pinhole Camera (cont.)

- Shrink the aperture

Pinhole Camera (cont.)

Robert Rigby 5x4 Pinhole Camers

\$200~\$700

Camera with Lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- Other points project to a "circle of confusion" in the image Current digital cameras replace the film with a sensor array (CCD or CMOS)

Camera with Lens (cont.)

field of view (FOV)

24mm

50 mm

135mm

Exposure

- Exposure = aperture + shutter speed
- Aperture of diameter \boldsymbol{D} restricts the range of rays (aperture may be on either side of the lens)
- Shutter speed is the amount of time that light is allowed to pass through the aperture

Exposure

- Aperture (in f stop)

Full aperture

Medium aperture

Stopped down

- Shutter speed (in fraction of a second)

Focal plane (closed)

Focal plane (open)

Effect of Shutter Speeds

- Slow shutter speed \rightarrow more light, but more motion blur

Slow shutterspeed

- Faster shutter speed freezes motion

1/125

1/250

1/500

Depth of Field

- Changing the aperture size affects depth of field
- A smaller aperture increases the range in which the object is approximately in focus

Depth of Field (cont.)

- Changing the aperture size affects depth of field.
- A smaller aperture increases the range in which the object is approximately in focus

Effect of Depth of Field

LESS DEPTH OF FIELD

Wider aperture

MORE DEPTH OF FIELD

Outline

- Introduction to real-world cameras
- Introduction to computer graphics cameras
- Camera space and camera transformation
- Projective cameras
- OpenGL Implementation

Recap. Again !

- Two ways for generating synthetic images

Ray tracing
virtual film

virtual camera

Rasterization

virtual camera

Computer Graphics Cameras

- To mimic the real-world functionalities of a real-world camera
- In offline (high-quality) graphics, we can simulate all the imaging processes of a camera using ray tracing

Advanced Simulation of Camera Lens

Advanced Simulation of Camera Lens

200 mm telephoto

50 mm double-gauss

35 mm wide-angle

16 mm fisheye

Computer Graphics Cameras

- To mimic the real-world functionality of a real-world camera
- In offline (high-quality) graphics, we can simulate all the imaging processes of a camera using ray tracing
- In interactive or real-time graphics, we usually use a pinhole camera for its simplicity for projection
- Every object will always be in-focus
- Depth of field and motion blur are simulated by other rendering techniques

Computer Graphics Camera (cont.)

Camera Properties

- The film is in front of the camera (to avoid up-side-down)
- Basic properties
- Camera position
- Viewing direction
- Camera local frame
- Field of view
- Aspect ratio

> viewing volume
> (view frustum)

- Advanced properties
- Shutter speed
- Lens system

Outline

- Introduction to real-world cameras
- Introduction to computer graphics cameras
- Camera space and camera transformation
- Projective cameras
- OpenGL Implementation

Camera (View) Transform

- The camera can be at an arbitrary position and have an arbitrary viewing direction in the world space
- This makes the projection difficult in terms of mathematics

Camera (View) Transform (cont.)

- To keep the math of projection simpler, we additionally define a camera (view, eye) space
- In the camera space, the camera is at the origin ($0,0,0$) and looking at the negative Z -axis

Camera (View) Transform (cont.)

- OpenGL itself is not familiar with the concept of a camera
- Instead, we simulate one by moving all objects in the scene in the reverse direction

Camera (View) Transform (cont.)

- For each object, we transform its world coordinate to the camera coordinate by
- Moving it with the inverse translation of the camera's position
- Rotate the object to match the camera's local frame

- Formed by the view direction (D), right (R), and up (U) vectors of the camera
- The three axes of the local frame should be orthogonal

Camera (View) Transform (cont.)

- Set camera's local frame
- However, it is usually difficult for a user to specify an orthogonal basis
- OpenGL will do it for you (with the Gram-Schmidt process)

Camera (View) Transform (cont.)

- Steps for setting camera's local frame
- Determine the viewing dir. with the position of the camera and a target point
viewing direction = normalize(cameraPos - targetPos)
- Assume a temporal "up vector"
- In most cases, we use the up direction ($0,1,0$) in the world frame
- Obtain the right vector by computing the cross product of the up vector and the viewing dir.
camera right = normalize(cross(up, viewing direction))
- Obtain the new up vector by computing the cross product of the viewing dir. and the right vector

target point
camera up $=$ normalize(cross(viewing direction, camera right))

Camera (View) Transform (cont.)

- Camera (view) transformation
(P_{x}, P_{y}, P_{z}) is the
camera's position

Camera (View) Transform (cont.)

Outline

- Introduction to real-world cameras
- Introduction to computer graphics cameras
- Camera space and camera transformation
- Projective cameras
- OpenGL Implementation

Projective Camera Models

Orthographic Projection

- Parallel projection with projectors perpendicular to the projection plane
- Preserve distance and angle
- Often used as front, side, and top views for 3D design

Orthographic Projection (cont.)

- Need to define the viewing volume with its six planes: left, right, top, bottom, near, and far
- The viewing volume (frustum) is cube-like
- Map the xyz-coordinate to the range $[-1,1]$

Orthographic Projection (cont.)

- Let the $\mathbf{I}, \mathbf{r}, \mathbf{t}, \mathbf{b}, \mathbf{n}, \mathbf{f}$ be the boundaries of the left, right, top, bottom, near, and far planes

$$
\begin{gathered}
l \leq x \leq r \\
\Rightarrow \quad \Longleftrightarrow 0 \leq x-l \leq r-l \\
0 \leq \frac{x-l}{r-l} \leq 1 \quad \Longleftrightarrow \quad 0 \leq 2\left(\frac{x-l}{r-l}\right) \leq 2 \\
\Rightarrow-1 \leq 2\left(\frac{x-l}{r-l}\right)-1 \leq 1 \quad \Longrightarrow-1 \leq \frac{2 x}{r-l}-\frac{r+l}{r-l} \leq 1
\end{gathered}
$$

Orthographic Projection (cont.)

- Let the $\mathbf{I}, \mathbf{r}, \mathbf{t}, \mathbf{b}, \mathbf{n}, \mathbf{f}$ be the boundaries of the left, right, top, bottom, near, and far planes
- An orthographic projection matrix can be written as

$$
\begin{gathered}
{\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right]} \\
\\
\\
\\
-1 \leq \frac{2 x}{r-l}-\frac{r+l}{r-l} \leq 1
\end{gathered}
$$

Perspective Projection

- In our real lives, the objects that are farther away appear much smaller
- This effect is called perspective
- A perspective projection tries to mimic the vision of human eyes

Perspective Projection (cont.)

- Four components for the perspective projection matrix
- The aspect ratio of the screen
- The ratio between the width and the height (W/H)
- The vertical field of view
- The vertical angle of the camera through which we are looking at the world
- The location of the near Z plane
- Used to clip objects that are too close to the camera
- The location of the far Z plane
- Used to clip objects that are too distant from the camera

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- The projection plane and the projection window
projection plane

projection window

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- Determine the height of the projection window as 2
- The width of the projection window becomes 2 times the aspect ratio (ar)

$-1 \quad$ aspect ratio (ar) $=\mathrm{W} / \mathrm{H}$

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- We can determine the distance from the camera to the projection window based on the field of view (fov)

$$
\begin{aligned}
& \tan \left(\frac{\alpha}{2}\right)=\frac{1}{d} \\
\Rightarrow & d=\frac{1}{\tan \left(\frac{\alpha}{2}\right)}
\end{aligned}
$$

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- Assume we want to find the projected coordinate ($\left(x_{p}, y_{p}\right)$ of a 3D point (x, y, z)
- The y component can be derived as ...

$$
\begin{aligned}
& \frac{y_{p}}{d}=\frac{y}{-z} \\
& \Rightarrow y_{p}=\frac{y \cdot d}{-z} \\
& \Rightarrow y_{p}= \\
&-z \cdot \tan \left(\frac{\alpha}{2}\right)
\end{aligned}
$$

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- Do the same derivation for the x component
- Note in the x-direction we have to multiply the aspect ratio ar
- After that, we can obtain the following equations

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- Fill-in the matrix, based on the following conditions

$$
x_{p}=\frac{x}{a r \cdot(-z) \cdot \tan \left(\frac{\alpha}{2}\right)} \quad y_{p}=\frac{y}{-z \cdot \cdot \tan \left(\frac{\alpha}{2}\right)}
$$

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
w
\end{array}\right]=\left[\begin{array}{c}
\longleftrightarrow \mathrm{f}(\mathrm{x}) \longrightarrow \\
\longleftrightarrow \mathrm{f}(\mathrm{y}) \longrightarrow
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
\vdots
\end{array}\right]
$$

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- Fill-in the matrix, based on the following conditions

$$
\begin{aligned}
x_{p}= & x \\
a r \cdot\left(\boxed{-z)} \cdot \overline{\tan \left(\frac{\alpha}{2}\right)}\right. & y_{p}=\frac{y}{--z \cdot \tan \left(\frac{\alpha}{2}\right)} \\
& {\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
w
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{a r \cdot \tan \left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\
0 & \frac{1}{\tan \left(\frac{\alpha}{2}\right)} & 0 & 0 \\
\longleftrightarrow & \mathrm{f}(\mathrm{z}) & \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] }
\end{aligned}
$$

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- Fill-in the matrix, based on the following conditions
- Assume the Z function has a shape $f(z)=A(-z)+B$
- After perspective division, it becomes

$$
\begin{aligned}
f(z) & =A-\frac{B}{z} \\
& {\left[\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p} \\
w
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{\operatorname{ar\cdot tan}\left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\
0 & \frac{1}{\tan \left(\frac{\alpha}{2}\right)} & 0 & 0 \\
0 & 0 & A & B \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] }
\end{aligned}
$$

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- Fill-in the matrix, based on the following conditions

$$
\begin{aligned}
& f(-n e a r Z)=-1 \quad A-\frac{B}{-n e a r Z}=-1 \Rightarrow A=-1-\frac{B}{n e a r Z} \\
& f(-f a r Z)=1 \quad A-\frac{B}{-f a r Z}=1 \quad A=1-\frac{B}{f a r Z}
\end{aligned}
$$

$$
2=\frac{B}{\operatorname{far} Z}-\frac{B}{n e a r Z}
$$

$$
\Rightarrow \frac{B \cdot \operatorname{near} Z-B \cdot \operatorname{far} Z}{\operatorname{far} Z \cdot f a r Z}=2
$$

$\Longrightarrow B(n e a r Z-f a r Z)=2 \cdot f a r Z \cdot f a r Z$

$$
\begin{aligned}
& B=\frac{2 \cdot f a r Z \cdot \operatorname{far} Z}{n e a r} Z-\operatorname{far} Z \\
& A=\frac{-n e a r}{} Z-\operatorname{far} Z \\
& n e a r Z-\operatorname{far} Z
\end{aligned}
$$

Perspective Projection (cont.)

- Derivation of the perspective projection matrix
- Fill-in the matrix, based on the following conditions

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{\operatorname{ar} \cdot \tan \left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\
0 & \frac{1}{\tan \left(\frac{\alpha}{2}\right)} & 0 & 0 \\
0 & 0 & \frac{- \text { near } Z-\operatorname{far} Z}{\text { near } Z-\operatorname{far} Z} & \frac{2 \cdot \operatorname{far} Z \cdot \text { near } Z}{\text { near } Z-\operatorname{far} Z} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Camera Models Comparison

Camera Models Comparison (cont.)

PERSPECTIVE

ORTHOGRAPHIC

Outline

- Introduction to real-world cameras
- Introduction to computer graphics cameras
- Camera space and camera transformation
- Projective cameras
- OpenGL Implementation

Ortho Projection Matrix

- glm::mat4x4 ortho(const float left, const float right, const float bottom, const float bottom, const float near, const float far)

```
glm::mat4x4 goP = glm::ortho(-5.0f, 5.0f, -5.0f, 5.0f, 0.01f, 100.0f);
```


Perspective Projection Matrix

$$
\left[\begin{array}{cccc}
\frac{1}{\operatorname{ar} \cdot \tan \left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\
0 & \frac{1}{\tan \left(\frac{\alpha}{2}\right)} & 0 & 0 \\
0 & 0 & \frac{-n e a r Z-f a r Z}{n e a r Z-f a r Z} & \frac{2 \cdot f a r Z \cdot n e a r Z}{n e a r Z-f a r Z} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- glm::mat4x4 perspective(const float fovy, const float aspectRatio ,
use radian, not degree
float fovy = glm::radians(30.0f);
float aspectRatio $=640.0 \mathrm{f} / 360.0 \mathrm{f}$; float nearZ $=0.1 f ; \quad$ width $/$ height float farZ $=100.0 f$;

```
glm::mat4x4 gP = glm::perspective(fovy, aspectRatio, nearZ, farZ);
```


The Full Vertex Transform Pipeline

Apply the Transformation on CPU

- To transform a vertex from object space to clip space, we multiply its position with the model-view-projection (MVP) matrix
- We can pre-multiply part of the matrix if some of them are fixed
- For example, we can pre-multiply the camera (view) and the projection matrix to form a VP matrix, and change the model matrix to perform object animation
- Remember to do the perspective division

Apply the Transformation on CPU (cont.)

```
glm::mat4x4 M = glm::rotate(glm::mat4x4(1.0f), glm::radians(30.0f), glm::vec3(0, 1, 0));
glm::vec3 cameraPos = glm::vec3(0.0f, 0.5f, 2.0f);
glm::vec3 cameraTarget = glm::vec3(0.0f, 0.0f, 0.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
glm::mat4x4 V = glm::lookAt(cameraPos, cameraTarget, cameraUp);
float fov = 40.0f;
float aspectRatio = (float)screenWidth / (float)screenHeight;
float zNear = 0.1f;
float zFar = 100.0f;
glm::mat4x4 P = glm::perspective(glm::radians(fov), aspectRatio, zNear, zFar);
glm::mat4x4 MVP = P * V * M;
// Apply CPU transformation.
mesh->ApplyTransformCPU(MVP);
```


Apply the Transformation on CPU (cont.)

```
void ApplyTransformCPU(std::vector<glm::vec3>& vertexPositions, const glm::mat4x4& mvpMatrix)
{
    for (unsigned int i = 0 ; i < vertexPositions.size(); +i) {
        glm::vec4 p = mvpMatrix * glm::vec4(vertexPositions[i], 1.0f);
        if (p.w f= 0.0f) {
            float inv = 1.0f / p.w;
            vertexPositions[i].x = p.x * inv;
            vertexPositions[i].y = p.y * inv;
            vertexPositions[i].z = p.z * inv;
        }
    }
                            perspective division
- A useful coding technique available in shader programming
- It combines a 3d vector and a 1d scalar to form a 4d vector
- You can also write
glm::vec4(vertexPositions[i].x, vertexPositions[i].y, vertexPositions[i].z, 1.0f);
```


Apply the Transformation on CPU (cont.)

Now we get a cube with the correct aspect ratio

Apply the Transformation on CPU

- So far, we have performed the transformation of vertices on the CPU

Vertex attributes

Position
Normal
Texture coordinate

Apply the Transformation on GPU

- However, doing this job on CPU is not cost-effective
- CPU is good at doing sequential, complex jobs
- But vertex transform is simple and can be done in parallel
- Next class, we will introduce the GPU graphics pipeline and the vertex shaders for parallel processing

