
Deferred Shading

Computer Graphics

Yu-Ting Wu

Computer Graphics 2024

Forward Rendering

2

vertex transform

lighting

texturing
fragments are discarded if they failed in the depth test!

Vertex
Data

Frame
Buffer

Primitive
Processing

Vertex
Shader

Primitive
Assembly

Rasterizer

Fragment
Shader

Depth
and

Stencil

Color Buffer
Blending

Dither

Computer Graphics 2024

Problem of Forward Rendering

• In scenes with many lights and complex layouts, lots of
computation resources are wasted on shading the
occluded surfaces that will finally be discarded!

3

Computer Graphics 2024

Problem of Forward Rendering (cont.)

• Overdraw per pixel!

4

Computer Graphics 2024

Deferred Shading

• A Two-pass rendering algorithm

• In the first pass, recognize all visible surfaces from the
camera, store their geometry and material properties
in geometry buffers (G-buffers)

• In the second pass, only compute lighting on the
visible surfaces based on the G-buffers

5

Computer Graphics 2024

Deferred Shading (cont.)

6

(textures)

render to multiple
render targets

World Position

World Normal

Albedo (Kd)

Specular (Ks)

Computer Graphics 2024

First Pass: Geometry Buffer Creation

• Observation: the surfaces shown on the screen are the
visible surfaces from the camera

• We can obtain the geometry and material data of visible
surfaces by rendering the scene into textures

• Z buffer will keep the closest surfaces to the camera for us

• During rendering, the fragment shader outputs the surfaces’
geometry data (world-space position and normal, texture
coordinate) and material data (coefficients of diffuse and
specular shading) as color

• Current graphics hardware allows us for creating multiple
render targets (possible to render multiple textures in a
render pass)

7

Computer Graphics 2024

First Pass: Geometry Buffer Creation (cont.)

• An example of G-buffers

8

Computer Graphics 2024

First Pass: Geometry Buffer Creation (cont.)

• Implementation

• Frame Buffer Objects (FBO)

• The results of the 3D pipeline in OpenGL end up in something
which is called a frame buffer object (FBO)

• When glutInitDisplayMode() is called, it creates the default
frame buffer using the specified parameters. This
framebuffer is managed by the windowing system and
cannot be deleted by OpenGL

• Programmers can create additional FBOs of their own, and
render content into the buffers

• Like the default frame buffer, an FBO consists of color and
depth attachment

9

Computer Graphics 2024

First Pass: Geometry Buffer Creation (cont.)

• Implementation

• Frame Buffer Objects (FBO)

10

Multiple Render Target
draw 3 color images and 1 depth image in one rendering pass

FBO

Depth BufferColor Buffer 1 Color Buffer 2 Color Buffer 3

RGB A

Computer Graphics 2024

First Pass: Geometry Buffer Creation (cont.)

• Implementation
• https://learnopengl.com/Advanced-Lighting/Deferred-Shading

11

create FBO

Generate textures for storing position,
normal, and material data

attach a texture to an FBO

void glTexImage2D(target, level, internalformat, width, height, border, format, type, data);

https://learnopengl.com/Advanced-Lighting/Deferred-Shading

Computer Graphics 2024

First Pass: Geometry Buffer Creation (cont.)

• Implementation
• https://learnopengl.com/Advanced-Lighting/Deferred-Shading

12

specifies a list of color buffers to be drawn into

create a depth buffer for the FBO

https://learnopengl.com/Advanced-Lighting/Deferred-Shading

Computer Graphics 2024

First Pass: Geometry Buffer Creation (cont.)

• Vertex Shader: transform vertex and pass interpolated data

• Fragment Shader:

13

output three images
in one pass

interpolated data from Vertex Shader

Computer Graphics 2024

Second Pass: Compute Lighting

• Render a screen-sized quad

• Pass all lights using uniform variables or textures to the
fragment shader

• In the fragment shader, lookup the G-buffers for per-pixel
geometry and material data

• Compute lighting with all lights

14

(0, 0) (0, 1)

(1, 0) (1, 1)

(0.83, 0.74)

Computer Graphics 2024

Second Pass: Compute Lighting (cont.)

• Implementation
• https://learnopengl.com/Advanced-Lighting/Deferred-Shading

15

https://learnopengl.com/Advanced-Lighting/Deferred-Shading

Computer Graphics 2024

Second Pass: Compute Lighting (cont.)

• Vertex Shader: transform vertex (quad) and pass
interpolated data

• Fragment Shader:

16

the generated G-buffers as textures

we only need interpolated texture coordinates because
position and normal are stored in G-buffers

Computer Graphics 2024

Second Pass: Compute Lighting (cont.)

17

Computer Graphics 2024

Second Pass: Compute Lighting (cont.)

• Render a scene with 32 lights

18

Computer Graphics 2024

Deferred Shading in Unreal Engine 4

19

Computer Graphics 2024

Discussion: Pros

• Reduce unnecessary lighting computation

• Can achieve significant performance improvement in
complex scenes with massive lights

20

Computer Graphics 2024

Discussion: Cons

• Larger memory bandwidth

• The storage of G-buffers takes lots of GPU memory

• Laborious for mobile devices

• Assume 10 textures are used (assume RGBA16F)

• Solution: use compact G-buffers

• Killzone 2

21

10 × 1920 × 1080 × 4 * 16 bits = 158 MB

Computer Graphics 2024

Discussion: Cons (cont.)

• Difficult for Multi Sampled Anti Aliasing (MSAA)

• Recap: aliasing

22

Computer Graphics 2024

Recap: Aliasing

23

• Rendering a continuous function (e.g., lines, curves) with
a discrete representation (pixels) will encounter the
aliasing problem

• Example: y = 5x/2 + 1

• Jaggedness is inevitable!
• Due to the use of a grid of discrete pixels

Computer Graphics 2024

Recap: Anti-aliasing

24

• Anti-aliasing is a practical technique
to reduce the jaggies

• Use intermediate grey values

• In the frequency domain, it relates
to reducing the frequency of the
signal

• Coloring each pixel in a shade of
grey whose brightness is
proportional to the area of the
intersection between the pixels and
a “one-pixel-wide” line

Computer Graphics 2024

Recap: Aliasing (cont.)

• Aliasing in rasterization

• Using discrete representation (pixel) to represent
continuous signal (triangle)

25

sample point

Computer Graphics 2024

Anti-aliasing

• Full Scene Anti Aliasing (FSAA)

• Render a higher resolution image and do down-sampling

• Very expensive

26

Computer Graphics 2024

Anti-aliasing (cont.)

• Super Sample Anti Aliasing (SSAA)

• Multiple locations are sampled within every pixel

• Also expensive (4× SSAA means 4× fragment computation)

27

Computer Graphics 2024

Anti-aliasing (cont.)

• Multi Sample Anti Aliasing (MSAA)

• Multi-samples are only used for determining visibility

• For each triangle, remain one fragment shader per pixel

28

Computer Graphics 2024

Anti-aliasing (cont.)

• Multi Sample Anti Aliasing (MSAA) in OpenGL

• Enable MSAA in your FreeGlut project

29

no MSAA 4× MSAA

Computer Graphics 2024

Discussion: Cons (cont.)

• MSAA is difficult for deferred shading

• Deferred shading decouples geometry process and
shading process

• Only the closest surface is kept in the G-buffers

• MSAA requires multiple subpixels information; however,
each pixel can store only one value

• Significantly increase rendering cost if you want to keep
more information within the pixel

• Render and compute lighting with respect to larger-resolution
G-buffers

30

Computer Graphics 2024

Discussion: Cons (cont.)

• Solution: turn to software algorithms, such as Fast
Approximate Anti Aliasing (FXAA)

• https://www.youtube.com/watch?v=jz_po-QcreU

31

https://www.youtube.com/watch?v=jz_po-QcreU

Computer Graphics 2024

Discussion: Cons (cont.)

• Cannot handle transparent objects

• Standard G-buffers only store the closest opaque
surface

• In practice, the transparent objects are rendered using
forward rendering in an alternative pass

32

Computer Graphics 2024

33

	投影片 1
	投影片 2: Forward Rendering
	投影片 3: Problem of Forward Rendering
	投影片 4: Problem of Forward Rendering (cont.)
	投影片 5: Deferred Shading
	投影片 6: Deferred Shading (cont.)
	投影片 7: First Pass: Geometry Buffer Creation
	投影片 8: First Pass: Geometry Buffer Creation (cont.)
	投影片 9: First Pass: Geometry Buffer Creation (cont.)
	投影片 10: First Pass: Geometry Buffer Creation (cont.)
	投影片 11: First Pass: Geometry Buffer Creation (cont.)
	投影片 12: First Pass: Geometry Buffer Creation (cont.)
	投影片 13: First Pass: Geometry Buffer Creation (cont.)
	投影片 14: Second Pass: Compute Lighting
	投影片 15: Second Pass: Compute Lighting (cont.)
	投影片 16: Second Pass: Compute Lighting (cont.)
	投影片 17: Second Pass: Compute Lighting (cont.)
	投影片 18: Second Pass: Compute Lighting (cont.)
	投影片 19: Deferred Shading in Unreal Engine 4
	投影片 20: Discussion: Pros
	投影片 21: Discussion: Cons
	投影片 22: Discussion: Cons (cont.)
	投影片 23: Recap: Aliasing
	投影片 24: Recap: Anti-aliasing
	投影片 25: Recap: Aliasing (cont.)
	投影片 26: Anti-aliasing
	投影片 27: Anti-aliasing (cont.)
	投影片 28: Anti-aliasing (cont.)
	投影片 29: Anti-aliasing (cont.)
	投影片 30: Discussion: Cons (cont.)
	投影片 31: Discussion: Cons (cont.)
	投影片 32: Discussion: Cons (cont.)
	投影片 33

