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Forward Rendering
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Problem of Forward Rendering

• In scenes with many lights and complex layouts, lots of 
computation resources are wasted on shading the 
occluded surfaces that will finally be discarded!
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Problem of Forward Rendering (cont.)

• Overdraw per pixel!
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Deferred Shading

• A Two-pass rendering algorithm

• In the first pass, recognize all visible surfaces from the 
camera, store their geometry and material properties 
in geometry buffers (G-buffers)

• In the second pass, only compute lighting on the 
visible surfaces based on the G-buffers
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Deferred Shading (cont.)
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First Pass: Geometry Buffer Creation

• Observation: the surfaces shown on the screen are the 
visible surfaces from the camera

• We can obtain the geometry and material data of visible 
surfaces by rendering the scene into textures

• Z buffer will keep the closest surfaces to the camera for us

• During rendering, the fragment shader outputs the surfaces’ 
geometry data (world-space position and normal, texture 
coordinate) and material data (coefficients of diffuse and 
specular shading) as color

• Current graphics hardware allows us for creating multiple 
render targets (possible to render multiple textures in a 
render pass)
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First Pass: Geometry Buffer Creation (cont.)

• An example of G-buffers
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First Pass: Geometry Buffer Creation (cont.)

• Implementation

• Frame Buffer Objects (FBO)

• The results of the 3D pipeline in OpenGL end up in something 
which is called a frame buffer object (FBO)

• When glutInitDisplayMode() is called, it creates the default 
frame buffer using the specified parameters. This 
framebuffer is managed by the windowing system and 
cannot be deleted by OpenGL

• Programmers can create additional FBOs of their own, and 
render content into the buffers

• Like the default frame buffer, an FBO consists of color and 
depth attachment
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First Pass: Geometry Buffer Creation (cont.)

• Implementation

• Frame Buffer Objects (FBO)
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Multiple Render Target
draw 3 color images and 1 depth image in one rendering pass
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First Pass: Geometry Buffer Creation (cont.)

• Implementation
• https://learnopengl.com/Advanced-Lighting/Deferred-Shading
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create FBO

Generate textures for storing position, 
normal, and material data

attach a texture to an FBO

void glTexImage2D(target, level, internalformat, width, height, border, format, type, data);

https://learnopengl.com/Advanced-Lighting/Deferred-Shading
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First Pass: Geometry Buffer Creation (cont.)

• Implementation
• https://learnopengl.com/Advanced-Lighting/Deferred-Shading
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specifies a list of color buffers to be drawn into

create a depth buffer for the FBO

https://learnopengl.com/Advanced-Lighting/Deferred-Shading
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First Pass: Geometry Buffer Creation (cont.)

• Vertex Shader: transform vertex and pass interpolated data

• Fragment Shader:
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output three images 
in one pass

interpolated data from Vertex Shader



Computer Graphics 2024

Second Pass: Compute Lighting

• Render a screen-sized quad

• Pass all lights using uniform variables or textures to the 
fragment shader

• In the fragment shader, lookup the G-buffers for per-pixel 
geometry and material data

• Compute lighting with all lights
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Second Pass: Compute Lighting (cont.)

• Implementation
• https://learnopengl.com/Advanced-Lighting/Deferred-Shading
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https://learnopengl.com/Advanced-Lighting/Deferred-Shading
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Second Pass: Compute Lighting (cont.)

• Vertex Shader: transform vertex (quad) and pass 
interpolated data

• Fragment Shader:
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the generated G-buffers as textures

we only need interpolated texture coordinates because 
position and normal are stored in G-buffers
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Second Pass: Compute Lighting (cont.)
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Second Pass: Compute Lighting (cont.)

• Render a scene with 32 lights
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Deferred Shading in Unreal Engine 4
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Discussion: Pros

• Reduce unnecessary lighting computation

• Can achieve significant performance improvement in 
complex scenes with massive lights
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Discussion: Cons

• Larger memory bandwidth

• The storage of G-buffers takes lots of GPU memory

• Laborious for mobile devices

• Assume 10 textures are used (assume RGBA16F)

• Solution: use compact G-buffers

• Killzone 2
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10 × 1920 × 1080 × 4 * 16 bits = 158 MB
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Discussion: Cons (cont.)

• Difficult for Multi Sampled Anti Aliasing (MSAA)

• Recap: aliasing
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Recap: Aliasing

23

• Rendering a continuous function (e.g., lines, curves) with 
a discrete representation (pixels) will encounter the 
aliasing problem

• Example: y = 5x/2 + 1

    

• Jaggedness is inevitable!
• Due to the use of a grid of discrete pixels
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Recap: Anti-aliasing
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• Anti-aliasing is a practical technique 
to reduce the jaggies

• Use intermediate grey values

• In the frequency domain, it relates 
to reducing the frequency of the 
signal

• Coloring each pixel in a shade of 
grey whose brightness is 
proportional to the area of the 
intersection between the pixels and 
a “one-pixel-wide” line
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Recap: Aliasing (cont.)

• Aliasing in rasterization

• Using discrete representation (pixel) to represent 
continuous signal (triangle)

25

sample point
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Anti-aliasing

• Full Scene Anti Aliasing (FSAA)

• Render a higher resolution image and do down-sampling

• Very expensive
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Anti-aliasing (cont.)

• Super Sample Anti Aliasing (SSAA)

• Multiple locations are sampled within every pixel

• Also expensive (4× SSAA means 4× fragment computation)
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Anti-aliasing (cont.)

• Multi Sample Anti Aliasing (MSAA)

• Multi-samples are only used for determining visibility

• For each triangle, remain one fragment shader per pixel
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Anti-aliasing (cont.)

• Multi Sample Anti Aliasing (MSAA) in OpenGL

• Enable MSAA in your FreeGlut project
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no MSAA 4× MSAA
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Discussion: Cons (cont.)

• MSAA is difficult for deferred shading

• Deferred shading decouples geometry process and 
shading process

• Only the closest surface is kept in the G-buffers

• MSAA requires multiple subpixels information; however, 
each pixel can store only one value

• Significantly increase rendering cost if you want to keep 
more information within the pixel

• Render and compute lighting with respect to larger-resolution 
G-buffers
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Discussion: Cons (cont.)

• Solution: turn to software algorithms, such as Fast 
Approximate Anti Aliasing (FXAA)

• https://www.youtube.com/watch?v=jz_po-QcreU
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https://www.youtube.com/watch?v=jz_po-QcreU


Computer Graphics 2024

Discussion: Cons (cont.)

• Cannot handle transparent objects

• Standard G-buffers only store the closest opaque 
surface

• In practice, the transparent objects are rendered using 
forward rendering in an alternative pass
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