

Advanced Materials

Computer Graphics Yu-Ting Wu

(with some slides borrowed from Prof. Yung-Yu Chuang)

Outline

- Overview
- Microfacet Models
- Materials beyond BRDFs
- BRDFs for Production

Outline

- Overview
- Microfacet Models
- Materials beyond BRDFs
- BRDFs for Production

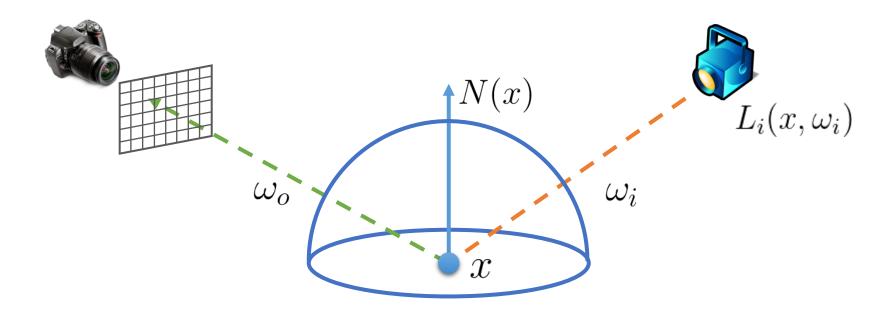
(BRDF)

The Rendering Equation

Proposed by Kajiya [1986]

emitted radiance emitted radiance geometry term $L(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega}^{\text{incident radiance}} \frac{L_i(x,\omega_i)f_r(x,\omega_o\leftarrow\omega_i)(N(x)\cdot\omega_i)d\omega_i}{\text{bidirectional reflectance distribution function}}$

Integral of all directions



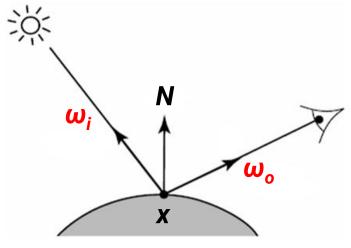
Formal Material Representation

 In Physically-based Rendering (PBR), the characteristic of a material is usually defined by Bidirectional **Reflectance Distribution Function (BRDF)**

$$f_r(x, \omega_o \leftarrow \omega_i)$$

• Describe how much light (ratio) coming from ω_i will reflect

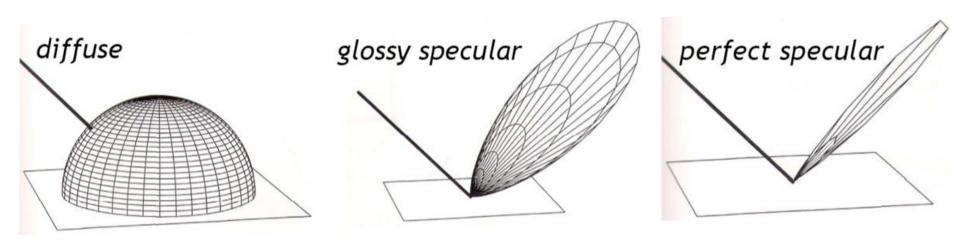
toward $\boldsymbol{\omega}_{o}$ at point \boldsymbol{x}



Formal Material Representation (cont.)

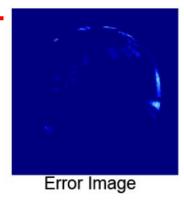
$$f_r(x,\omega_o\leftarrow\omega_i)$$

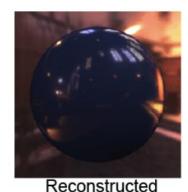
Describe how much light (ratio) coming from ω_i will reflect toward ω_o at point x



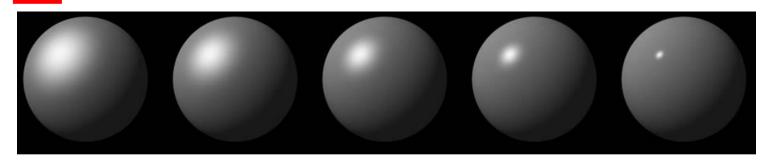
Formal Material Representation (cont.)

- A good representation should have
 - Accuracy
 - Expressiveness
 - Speed





 $k_s \cdot I \cdot \max(0, vE \cdot vR)^n$



$$n = 3.0$$

$$n = 5.0$$

$$n = 10.0$$

$$n = 27.0$$

$$n = 200.0$$

Classification of BRDF

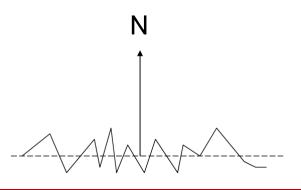
- Phenomenological models
 - Qualitative approach
 - Models with intuitive parameters
 - Examples are Phong and Blinn-Phong lighting models
- Geometric optics
 - Microfacet models
- Measured data
 - Usually described in tabular form or coefficients of a set of basis functions

Outline

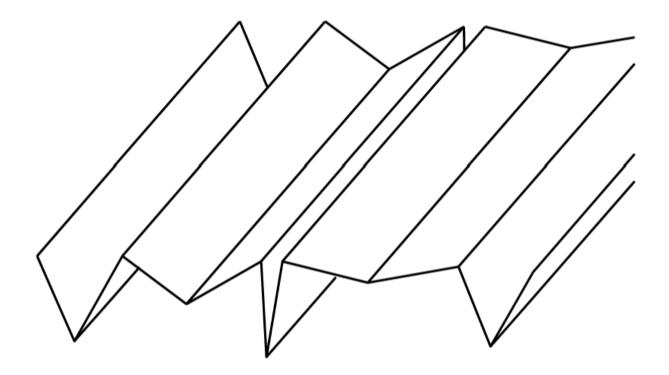
- Overview
- Microfacet Models
- Materials beyond BRDFs
- BRDFs for Production

Microfacet Model

- Rough surfaces can be modeled as a collection of small microfacets
- The aggregate behavior of the small microfacets determines the scattering
- Two components for deriving a closed-form BRDF expression
 - The distribution of microfacets
 - How light scatters from the individual microfacet



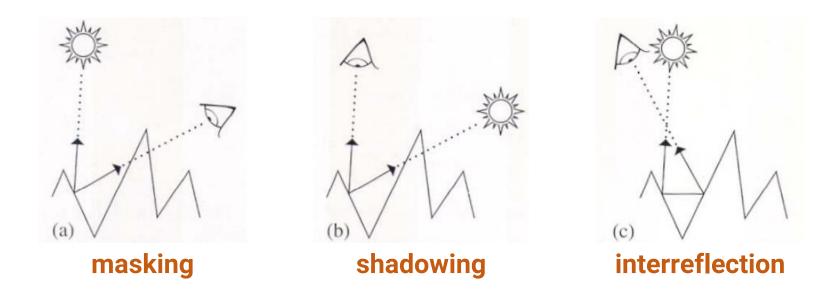
Microfacet Model (cont.)



Most microfacet models assume that all microfacets make up **symmetric V-shaped** grooves so that only neighboring microfacet needs to be considered

Microfacet Model (cont.)

Important geometric effects to consider

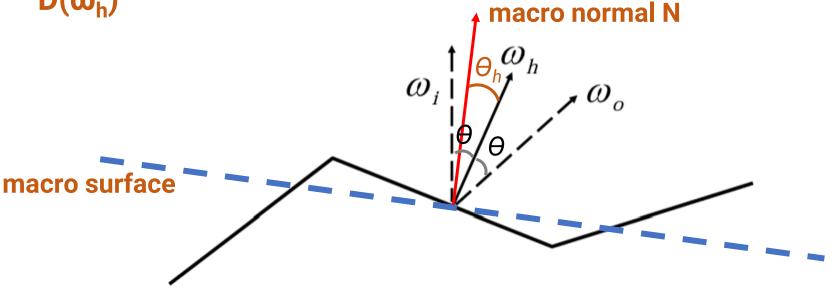


 Particular models consider these effects with varying degrees of accuracy

Torrance-Sparrow Model

- One of the first microfacet model
- Designed to model metallic surfaces

• Assumption: a surface is composed of a collection of perfectly smooth mirrored microfacets with distribution $D(\omega_h)$



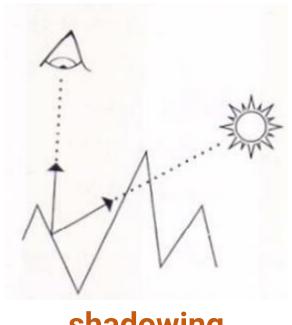
- Described by
 - Microfacet distribution D
 - Geometric attenuation G
 - Fresnel reflection F

$$f_r(\omega_o \leftarrow \omega_i) = \frac{D(\omega_h)G(\omega_i, \omega_o)F(\omega_i, \omega_h)}{4\cos\theta_i \cos\theta_o}$$

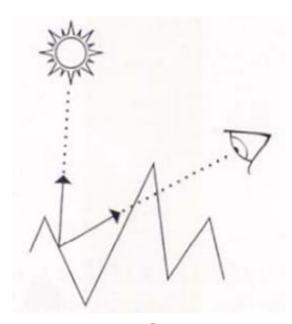
- Described by
 - Microfacet distribution D
 - Geometric attenuation G
 - Fresnel reflection F

$$f_r(\omega_o \leftarrow \omega_i) = \frac{D(\omega_h)G(\omega_i, \omega_o)F(\omega_i, \omega_h)}{4\cos\theta_i \cos\theta_o}$$

Geometry attenuation factor



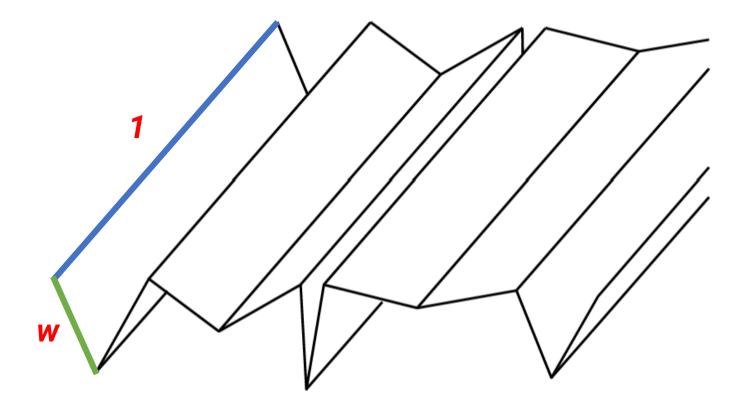
shadowing



masking

$$G = \frac{\text{facet area that is both visible and illuminated}}{\text{total facet area}}$$

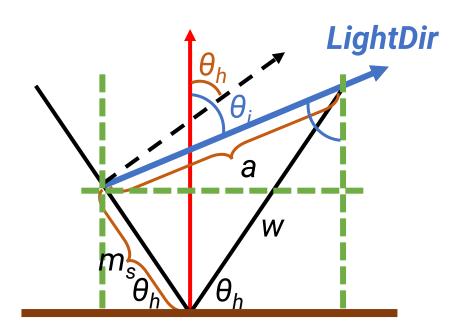
Configuration



Shadowing term

$$1 - \frac{m_s}{w}$$

$$\frac{m_s}{w} \qquad a\sin\theta_i = w\cos\theta_h + m_s\cos\theta_h \qquad \times \cos\theta_i$$
$$a\cos\theta_i = w\sin\theta_h - m_s\sin\theta_h \qquad \times -\sin\theta_i$$



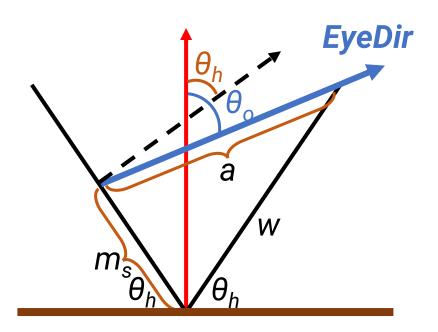
$$\frac{m_s}{w} = -\frac{\cos(\theta_h + \theta_i)}{\cos(\theta_h - \theta_i)}$$

$$1 - \frac{m_s}{w} = \frac{2\cos\theta_h\cos\theta_i}{\cos(\theta_h - \theta_i)}$$

Masking term

$$1 - \frac{m_v}{w}$$

$$a\sin\theta_o = w\cos\theta_h + m_s\cos\theta_h \times \cos\theta_o$$
$$a\cos\theta_o = w\sin\theta_h + m_s\sin\theta_h \times -\sin\theta_o$$



$$1 - \frac{m_v}{w} = \frac{2\cos\theta_h \cos\theta_o}{\cos(\theta_h - \theta_o)}$$

Geometry attenuation factor

$$G = \frac{\text{facet area that is both visible and illuminated}}{\text{total facet area}}$$

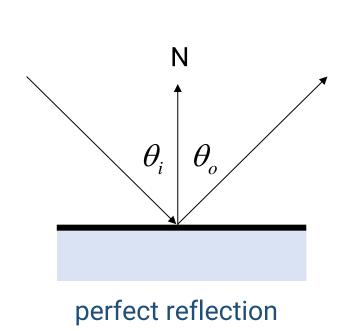
$$G = \min\left(1 - \frac{m_s}{w}, 1 - \frac{m_v}{w}\right) = \min\left(\frac{2\cos\theta_h\cos\theta_i}{\cos(\theta_h - \theta_i)}, \frac{2\cos\theta_h\cos\theta_o}{\cos(\theta_h - \theta_o)}\right)$$

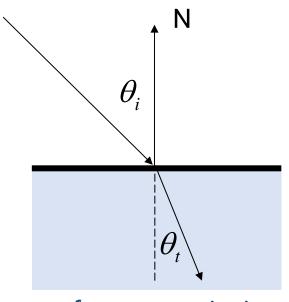
- Described by
 - Microfacet distribution D
 - Geometric attenuation G
 - Fresnel reflection F

$$f_r(\omega_o \leftarrow \omega_i) = \frac{D(\omega_h)G(\omega_i, \omega_o)F(\omega_i, \omega_h)}{4\cos\theta_i \cos\theta_o}$$

- Real-world surface has both reflection and transmission
 - Perfect specular reflection: $\theta_i = \theta_o$
 - Perfect specular transmission: $\underline{\eta_i} \sin \theta_i = \underline{\eta_t} \sin \theta_t$ (Snell's law)

index of refraction





perfect transmission

- Reflectivity and transmissiveness: fraction of incoming light that is reflected or transmitted
 - Usually view dependent
 - Hence, the reflectivity is not a constant and should be corrected by the Fresnel equation
- Fresnel equation
 - Related to the wave's electric field
 - S polarization and P polarization https://en.wikipedia.org/wiki/Fresnel_equations

Different properties for dielectrics and conductors

$$r_{\parallel} = \frac{\eta_t \cos \theta_i - \eta_i \cos \theta_t}{\eta_t \cos \theta_i + \eta_i \cos \theta_t}$$

$$r_{\parallel}^2 = \frac{(\eta^2 + k^2) \cos^2 \theta_i - 2\eta \cos \theta_i + 1}{(\eta^2 + k^2) \cos^2 \theta_i + 2\eta \cos \theta_i + 1}$$

$$r_{\perp} = \frac{\eta_i \cos \theta_i - \eta_t \cos \theta_t}{\eta_i \cos \theta_i + \eta_t \cos \theta_t}$$

$$r_{\perp}^2 = \frac{(\eta^2 + k^2) \cos^2 \theta_i - 2\eta \cos \theta_i + 1}{(\eta^2 + k^2) \cos^2 \theta_i + 2\eta \cos \theta_i + 1}$$

$$r_{\perp}^2 = \frac{(\eta^2 + k^2) \cos^2 \theta_i - 2\eta \cos \theta_i + 1}{(\eta^2 + k^2) \cos^2 \theta_i + 2\eta \cos \theta_i + 1}$$

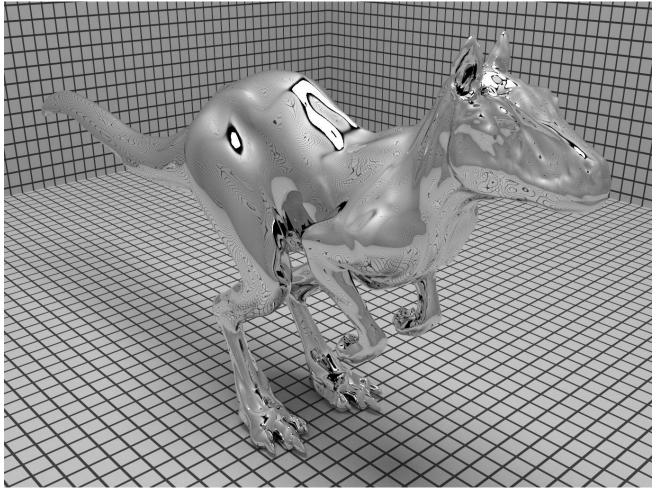
Fresnel reflectance for **dielectrics**

Fresnel reflectance for **conductors**

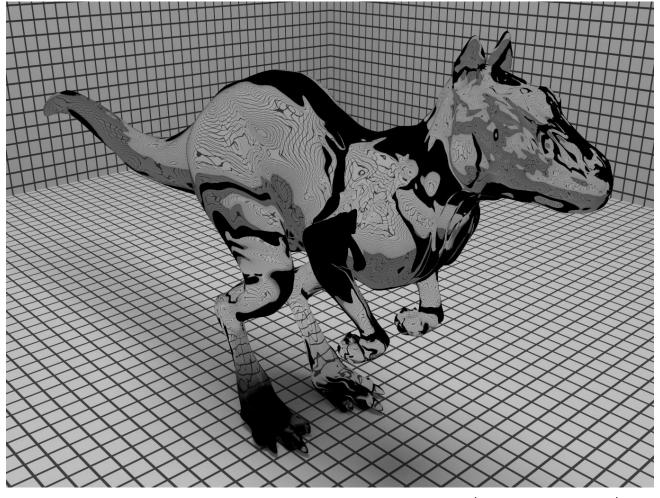
$$F_r(\omega_i) = \frac{1}{2} (r_{\parallel}^2 + r_{\perp}^2)$$
assume light is unpolarized

Indices of refraction

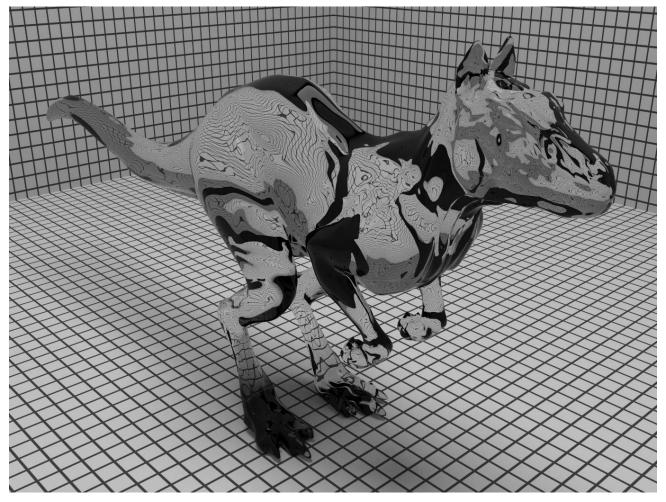
medium	Index of refraction
Vaccum	1.0
Air at sea level	1.00029
Ice	1.31
Water (20°C)	1.333
Fused quartz	1.46
Glass	1.5~1.6
Sapphire	1.77
Diamond	2.42



perfect specular refraction



perfect specular transmission (refraction)



Fresnel modulation

- Described by
 - Microfacet distribution D
 - Geometric attenuation G
 - Fresnel reflection F

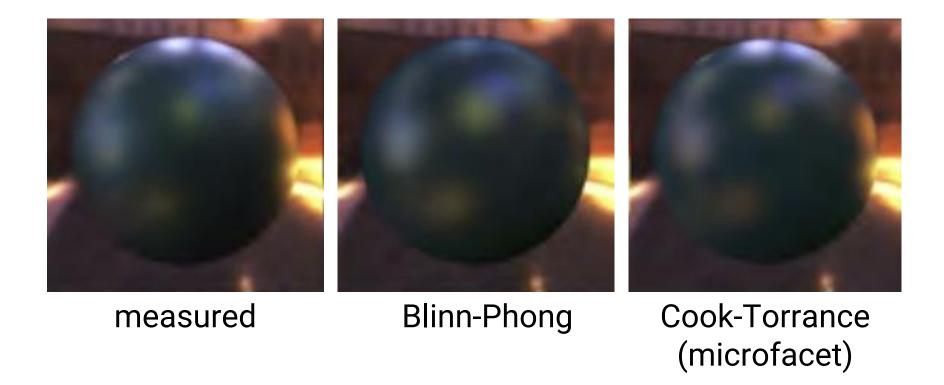
$$f_r(\omega_o \leftarrow \omega_i) = \frac{D(\omega_h)G(\omega_i, \omega_o)F(\omega_i, \omega_h)}{4\cos\theta_i \cos\theta_o}$$

How many micro surfaces have this orientation

Commonly used distributions: Beckmann, GGX

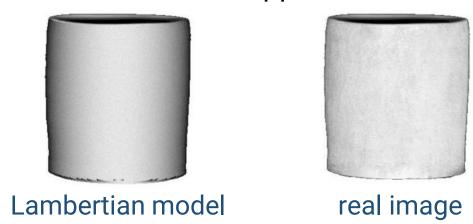
$$D\left(\omega_{h}
ight)=rac{lpha^{2}}{\pi\Big({\left(\mathbf{n}\cdotoldsymbol{\omega}_{h}
ight)^{2}\left(lpha^{2}-1
ight)+1}\Big)^{2}}$$

Put it all together



Oren-Nayar Model

- Many real-world materials such as concrete, sand and cloth are not real Lambertian
 - Specifically, rough surfaces generally appear brighter as the illumination direction approaches the viewing direction



 Assumption: a surface is composed of a collection of perfectly Lambertian grooves whose orientation angles follow a Gaussian distribution

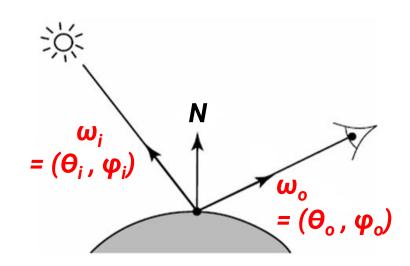
$$f_r(\omega_o \leftarrow \omega_i) = \frac{\rho}{\pi} (A + B \max(0, \cos(\phi_i - \phi_o)) \sin\alpha \tan\beta)$$

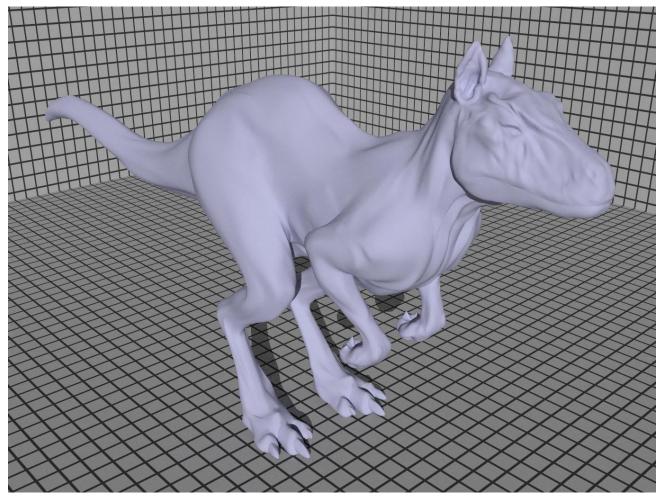
$$A=1-\frac{\ensuremath{\overline{\sigma}}^2}{2(\sigma^2+0.33)}$$
 the standard deviation of Gaussian

$$B = \frac{0.45\sigma^2}{\sigma^2 + 0.09}$$

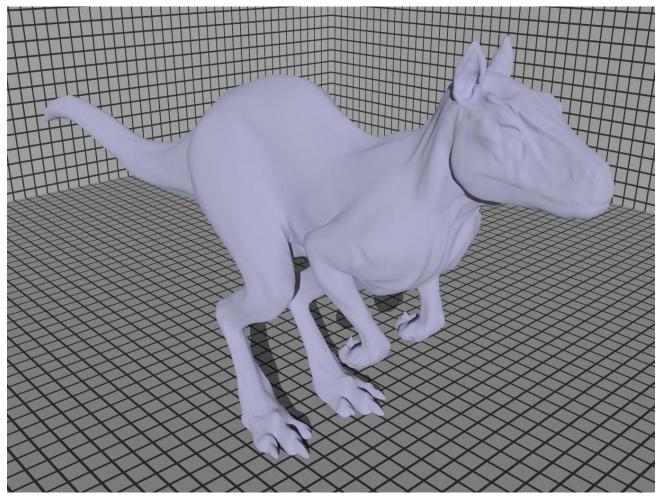
$$\alpha = \max(\theta_i, \theta_o)$$

$$\beta = \min(\theta_i, \theta_o)$$





Lambertian model

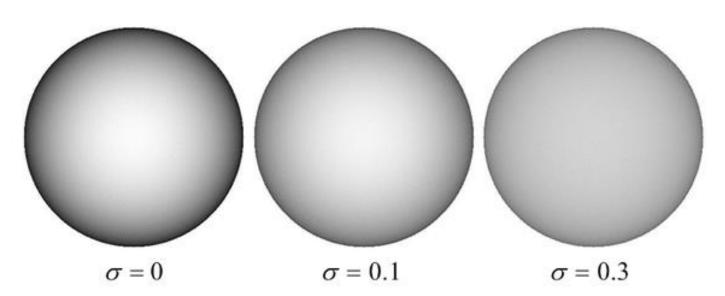


Oren-Nayar model

• When the standard deviation σ becomes zero, Oren-Nayar model is reduced to Lambertian model

$$f_r(\omega_o \leftarrow \omega_i) = \frac{\rho}{\pi} (A + B \max(0, \cos(\phi_i - \phi_o)) \sin\alpha \tan\beta)$$

$$f_r(\omega_o \leftarrow \omega_i) = \frac{\rho}{\pi}$$



Outline

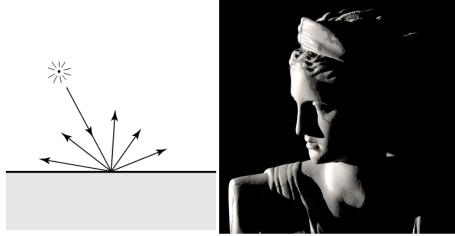
- Overview
- Microfacet Models
- Materials beyond BRDFs
- BRDFs for Production

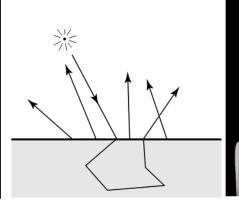
Subsurface Scattering

- Some materials interact with lights with a subsurface scattering process that allows lights to enter and scatter within a medium
- It gives objects a distinct soft look

BSSRDF

BRDF v.s. BSSRDF

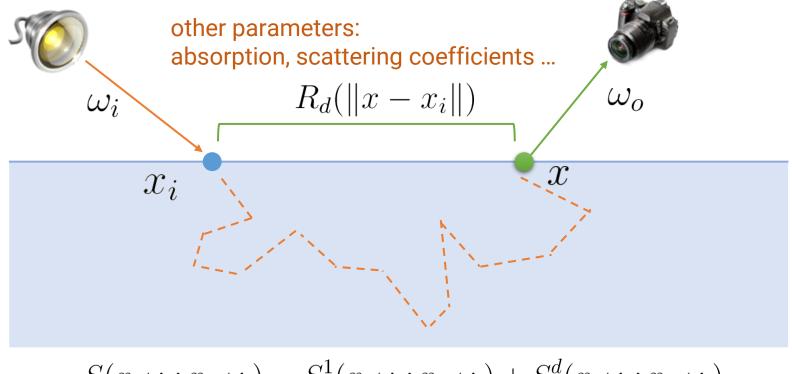




Bidirectional Reflectance Distribution Function (BRDF)

Bidirectional Subsurface Scattering Reflectance Distribution Function (BSSRDF)

Approximate BSSRDF with Dipole



$$S(x, \omega_o; x_i, \omega_i) = S^1(x, \omega_o; x_i, \omega_i) + S^d(x, \omega_o; x_i, \omega_i)$$
$$S^d(x, \omega_o; x_i, \omega_i) = \frac{1}{\pi} F_t(\eta, \omega_o) R_d(||x - x_i||) F_t(\eta, \omega_i)$$

"A Practical Model for Subsurface Light Transport", Jensen et al. 2001

Outline

- Overview
- Microfacet Models
- Materials beyond BRDFs
- BRDFs for Production

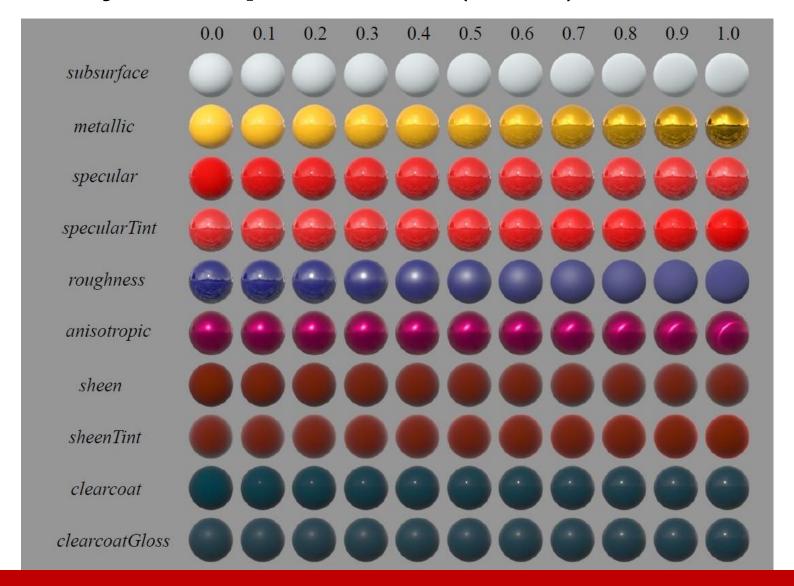
Disney Principled BRDF

- Phenomenological models
 - More intuitive parameters; however, not accurate
- Geometric optics
 - More accurate but difficult to use by artists
- Disney Principled BRDF would like to combine the advantages of both models!
 - Represent a physically-based model (based on the Microfacet model) with few intuitive parameters
 - Each parameter has a range between [0, 1]
 - https://disneyanimation.com/publications/physicallybased-shading-at-disney/

Disney Principled BRDF (cont.)

- Proposed when producing the movie, Wreck-It Ralph (2012)
 - Also used by the Unity and Unreal engine

Disney Principled BRDF (cont.)



Disney Principled BRDF (cont.)

Code: https://github.com/wdas/brdf/blob/main/src/brdfs/disney.brdf

$$f_{ ext{disney}}(oldsymbol{\omega}_i,oldsymbol{\omega}_o) = \ (1-\sigma_m) \left(rac{C}{\pi} ext{mix}(rac{f_d(oldsymbol{\omega}_i,oldsymbol{\omega}_o)}{f_{ss}(oldsymbol{\omega}_i,oldsymbol{\omega}_o)}, f_{ss}(oldsymbol{\omega}_i,oldsymbol{\omega}_o), \sigma_{ss}) + rac{f_{sh}(oldsymbol{\omega}_i,oldsymbol{\omega}_o)}{f_{sh}(oldsymbol{\omega}_i,oldsymbol{\omega}_o)} + rac{F_s(heta_d)G_s(oldsymbol{\omega}_i,oldsymbol{\omega}_o)D_s(oldsymbol{\omega}_h)}{4\cos heta_i\cos heta_o} \quad ext{specular} \\ + rac{\sigma_c}{4} rac{F_c(heta_d)G_c(oldsymbol{\omega}_i,oldsymbol{\omega}_o)D_c(oldsymbol{\omega}_i,oldsymbol{\omega}_o)}{4\cos heta_i\cos heta_o} \quad ext{clearcoat}$$

$$f_{d}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{D90} - 1)(1 - \cos\theta_{i})^{5})(1 + (F_{D90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{D90} = 0.5 + 2\cos^{2}\theta_{d}\sigma_{r}$$

$$f_{ss}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = 1.25(F_{ss}(1/(\cos\theta_{i} + \cos\theta_{o}) - 0.5) + 0.5)$$

$$F_{ss} = (1 + (F_{ss90} - 1)(1 - \cos\theta_{i})^{5})(1 + (F_{ss90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{ss90} = \cos^{2}\theta_{d}\sigma_{r}$$

$$f_{sh}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = \min(\cos\theta_{i}, C_{tint}, \sigma_{sht})\sigma_{sh}(1 - \cos\theta_{d})^{5}$$

$$C_{tint} = \frac{C}{\text{lum}(C)}$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{s}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o}) = (1 + (F_{cs90} - 1)(1 - \cos\theta_{o})^{5})$$

$$F_{c}(\boldsymbol{\omega}_{o})$$

