
Transformation

Computer Graphics

Yu-Ting Wu

Computer Graphics 2025

Outline

• Overview (world transformation)

• Transformation

• OpenGL implementation

2

Computer Graphics 2025

Outline

• Overview (world transformation)

• Transformation

• OpenGL implementation

3

Computer Graphics 2025

Recap: Describing Geometry

• Geometry of an object is defined by specifying the
coordinates of the vertices and their adjacencies

4

12 triangles 10K triangles

Computer Graphics 2025

Describing Scenes

• A virtual scene usually consists of lots of objects

5

Computer Graphics 2025

Object Space and World Space

• Objects are defined in object space individually

6

Computer Graphics 2025

Object Space and World Space (cont.)

• Objects are defined in object space individually

• When building a scene, each object is transformed to a
global and unique space called world space

• The transform is called world transform

7

Object Space

World
Transformation

World Space

Translation
Scaling
Rotation

Computer Graphics 2025

World Space and World Coordinate (cont.)

• Advantages of using “transformation”

• Reuse model: design a model and use it in several scenes

• Memory saving: store a 4x4 matrix instead of duplicating
the entire models

8

Computer Graphics 2025

Outline

• Overview (world transformation)

• Transformation

• OpenGL implementation

9

Computer Graphics 2025

2D Transformations

• 2D transformation of a point can be represented by the
multiplication of a column vector (point) and a
transformation matrix

• Common transformations include translation, scaling,
and rotation

10

new point original point

transform matrix

p’ p

Computer Graphics 2025

Common World Transformations

• Translation

• Scaling

• Rotation

• We will start by introducing 2D transformations and
then extend to the 3D cases

11

translation scaling rotation

Computer Graphics 2025

2D Translation

• Given a point p(x, y) and a translation offset T(tx, ty),
the new point p’(x‘, y’) after translation is p’ = p + T

• Can be represented as Matrix-vector multiplication

12

Computer Graphics 2025

2D Scaling

• Given a point p(x, y) and a scaling factor S(sx, sy), the
new point p’(x’, y’) after scaling is p’ = S p

• Matrix-vector multiplication

13

(1.5, 1.5)

(3, 3)

Computer Graphics 2025

2D Rotation

• Given a point p(x, y), rotate it with respect to the origin
by Ө and get the new point p’(x’, y’) after rotation

• Firstly we define

14

Ө > 0: rotate
counterclockwise

Ө < 0: rotate
clockwise

Computer Graphics 2025

2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin
by Ө and get the new point p’(x’, y’) after rotation

15

Computer Graphics 2025

2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin
by Ө and get the new point p’(x’, y’) after rotation

• Matrix-vector multiplication

16

Computer Graphics 2025

2D Translation, Scaling, and Rotation

• Translation

• Scaling

• Rotation

• Using a 3x3 matrix allows us to perform all transformations
using matrix/vector multiplications
• We can also pre-multiply (concatenate) all the matrices

17

Computer Graphics 2025

Homogeneous Coordinate

• We call the (x, y, 1) representation the homogeneous
coordinate for a point (x, y)

• If w is not equal to 1, to make the transformed coordinate
also homogeneous, we need to divide the x and y
components by w

18

Computer Graphics 2025

Revisit 2D Scaling

• The standard scaling matrix will only anchor at (0, 0)

• Otherwise, the object center got shifted

• What if we want the object to be scaled w.r.t its center?

19

(1.5, 1.5) (3, 3)

Computer Graphics 2025

Revisit 2D Scaling (cont.)

• Scaling about an arbitrary pivot point Q(qx, qy)

• Translate the objects so that Q will coincide with the
origin: T(-qx, -qy)

• Scale the object: S(sx, sy)

• Translate the object back: T(qx, qy)

• The final scaling matrix can be written as

20

(qx, qy)

Concatenation of matrices

Computer Graphics 2025

Revisit 2D Rotation

• The standard rotation matrix is used to rotate about
the origin (0, 0)

• What if we want the object to be rotated w.r.t a specific
pivot?

21

Computer Graphics 2025

Revisit 2D Rotation (cont.)

• Rotate about an arbitrary pivot point Q(qx, qy) by Ө

• Translate the objects so that Q will coincide with the
origin: T(-qx, -qy)

• Rotate the object: R(Ө)

• Translate the object back: T(qx, qy)

• The final rotation matrix can be written as

22

(qx, qy)

(qx, qy)

Computer Graphics 2025

• A 3D transformation is represented as a 4x4 matrix,
with homogeneous coordinate

Translation (3D) and Scaling (3D)

23

2D 3D

translation

scaling

Computer Graphics 2025

Rotation (3D)

24

2D 3D

rotation w.r.t
x-axis

rotation w.r.t
y-axis

rotation w.r.t
z-axis

Computer Graphics 2025

Outline

• Overview (world transformation)

• Transformation

• OpenGL implementation

25

Computer Graphics 2025

Goals

• Learn how to build the transformation matrices

• Learn how to code with GLM matrices

• Learn how to concatenate the transformation

26

Computer Graphics 2025

GLM Matrix

27

• GLM provides several classes to support matrices with
different rows and columns

• Square matrix

• glm::mat2 (equals to glm::mat2x2)

• glm::mat3 (equals to glm::mat3x3)

• glm::mat4 (equals to glm::mat4x4)

• Non-square matrix

• glm::matmxn (m and n are in the range from 2 to 4)

• Declare a zero 4x4 matrix: glm::mat4x4(0.0f);

• Declare an identity 4x4 matrix: glm::mat4x4(1.0f);

Computer Graphics 2025

Matrix Representation: Column/Row Major

28

• A 2-dimensional matrix can be accessed by either
column-major or row-major

• By default, OpenGL (and thus GLM) supplies matrix data
in column-major

row-major column-major

Computer Graphics 2025

• glm::mat4x4 translate(const glm::mat4x4& m ,

const glm::vec3& v)

Translation Matrix

29

returned
translation matrix

translation vector

base matrix

Computer Graphics 2025

• If you print the matrix produced by glm::translate, you
will get the following result

• If you want to build the matrix on your own, remember to
transpose the matrix

Translation Matrix (cont.)

30

Why? OpenGL and GLM use column-major representation!

Computer Graphics 2025

Translation Matrix (cont.)

31

cube center (1.5, 2.0, 0.0) cube center (0.0, 0.0, 0.0)

apply a translation of (-1.5, -2.0, 0.0)

Computer Graphics 2025

• glm::mat4x4 scale(const glm::mat4x4& m ,

const glm::vec3& v)

Scaling Matrix

32

returned
scaling matrix

scaling vector

base matrix

Computer Graphics 2025

Scaling Matrix (cont.)

33

cube center (1.5, 2.0, 0.0) cube center (3.0, 2.0, 0.0)

apply a scaling of (2.0, 1.0, 2.0)

Computer Graphics 2025

• glm::mat4x4 rotate(const glm::mat4x4& m ,

const float angle ,

const glm::vec3& axis)

Rotation Matrix

34

rotation w.r.t
x-axis

rotation w.r.t
y-axis

rotation w.r.t
z-axis

returned
rotation matrix

rotate axis

base matrix

rotate amount in radian

Computer Graphics 2025

3D Rotating (cont.)

35

rotate w.r.t the global Y axis

Computer Graphics 2025

• The standard scaling matrix will only anchor at (0, 0)

3D Scaling in Place

36

cube center at (1.5, 2.0, 0.0)

cube center at (3.0, 4.0, 0.0)

Computer Graphics 2025

• Scaling about an arbitrary pivot point Q(qx, qy)

• Translate the objects so that Q will coincide with the
origin: T(-qx, -qy)

• Scale the object: S(sx, sy)

• Translate the object back: T(qx, qy)

• The final scaling matrix can be written as

3D Scaling in Place (cont.)

37

(qx, qy)

Computer Graphics 2025

3D Scaling in Place (cont.)

38

Computer Graphics 2025

• The standard rotation matrix rotates about an axis

• Rotate about an arbitrary pivot point Q(qx, qy) by Ө

• Translate the objects so that Q will coincide with the
origin: T(-qx, -qy)

• Rotate the object: R(Ө)

• Translate the object back: T(qx, qy)

• The final rotation matrix can be written as

3D Rotating in Place (cont.)

39

(qx, qy)

(qx, qy)

Computer Graphics 2025

3D Rotating in Place (cont.)

40

rotate in place!

Computer Graphics 2025

Where is the Camera and Projection?

• The typical flow of bringing a 3D point to the 2D screen
involves the camera projection

• For now, we specify neither the camera nor the projection,
so you can consider that we set the “projected” positions
of the vertices directly

• In the next topic (camera), we will go through the full
transformation

41

Computer Graphics 2025

43

	投影片 1
	投影片 2: Outline
	投影片 3: Outline
	投影片 4: Recap: Describing Geometry
	投影片 5: Describing Scenes
	投影片 6: Object Space and World Space
	投影片 7: Object Space and World Space (cont.)
	投影片 8: World Space and World Coordinate (cont.)
	投影片 9: Outline
	投影片 10: 2D Transformations
	投影片 11: Common World Transformations
	投影片 12: 2D Translation
	投影片 13: 2D Scaling
	投影片 14: 2D Rotation
	投影片 15: 2D Rotation (cont.)
	投影片 16: 2D Rotation (cont.)
	投影片 17: 2D Translation, Scaling, and Rotation
	投影片 18: Homogeneous Coordinate
	投影片 19: Revisit 2D Scaling
	投影片 20: Revisit 2D Scaling (cont.)
	投影片 21: Revisit 2D Rotation
	投影片 22: Revisit 2D Rotation (cont.)
	投影片 23: Translation (3D) and Scaling (3D)
	投影片 24: Rotation (3D)
	投影片 25: Outline
	投影片 26: Goals
	投影片 27: GLM Matrix
	投影片 28: Matrix Representation: Column/Row Major
	投影片 29: Translation Matrix
	投影片 30: Translation Matrix (cont.)
	投影片 31: Translation Matrix (cont.)
	投影片 32: Scaling Matrix
	投影片 33: Scaling Matrix (cont.)
	投影片 34: Rotation Matrix
	投影片 35: 3D Rotating (cont.)
	投影片 36: 3D Scaling in Place
	投影片 37: 3D Scaling in Place (cont.)
	投影片 38: 3D Scaling in Place (cont.)
	投影片 39: 3D Rotating in Place (cont.)
	投影片 40: 3D Rotating in Place (cont.)
	投影片 41: Where is the Camera and Projection?
	投影片 43

