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Recap: Describing Geometry

• Geometry of an object is defined by specifying the 
coordinates of the vertices and their adjacencies
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12 triangles 10K triangles
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Describing Scenes

• A virtual scene usually consists of lots of objects
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Object Space and World Space

• Objects are defined in object space individually
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Object Space and World Space (cont.)

• Objects are defined in object space individually

• When building a scene, each object is transformed to a 
global and unique space called world space

• The transform is called world transform
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World Space and World Coordinate (cont.)

• Advantages of using “transformation”

• Reuse model: design a model and use it in several scenes

• Memory saving: store a 4x4 matrix instead of duplicating 
the entire models
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2D Transformations

• 2D transformation of a point can be represented by the 
multiplication of a column vector (point) and a 
transformation matrix

• Common transformations include translation, scaling, 
and rotation
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new point original point

transform matrix
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Common World Transformations

• Translation

• Scaling

• Rotation

• We will start by introducing 2D transformations and 
then extend to the 3D cases
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translation scaling rotation
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2D Translation

• Given a point p(x, y) and a translation offset T(tx, ty), 
the new point p’(x‘, y’) after translation is p’ = p + T

• Can be represented as Matrix-vector multiplication
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2D Scaling

• Given a point p(x, y) and a scaling factor S(sx, sy), the 
new point p’(x’, y’) after scaling is p’ = S p 

• Matrix-vector multiplication
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(1.5, 1.5)
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2D Rotation 

• Given a point p(x, y), rotate it with respect to the origin 
by Ө and get the new point p’(x’, y’) after rotation 

• Firstly we define
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Ө > 0: rotate 
counterclockwise

Ө < 0: rotate 
clockwise
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2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin 
by Ө and get the new point p’(x’, y’) after rotation 
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2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin 
by Ө and get the new point p’(x’, y’) after rotation 

• Matrix-vector multiplication
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2D Translation, Scaling, and Rotation

• Translation

• Scaling

• Rotation

• Using a 3x3 matrix allows us to perform all transformations 
using matrix/vector multiplications
• We can also pre-multiply (concatenate) all the matrices
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Homogeneous Coordinate

• We call the (x, y, 1) representation the homogeneous 
coordinate for a point (x, y)

• If w is not equal to 1, to make the transformed coordinate 
also homogeneous, we need to divide the x and y 
components by w
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Revisit 2D Scaling

• The standard scaling matrix will only anchor at (0, 0)

• Otherwise, the object center got shifted

• What if we want the object to be scaled w.r.t its center?

19
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Revisit 2D Scaling (cont.)

• Scaling about an arbitrary pivot point Q(qx, qy)

• Translate the objects so that Q will coincide with the 
origin: T(-qx, -qy)

• Scale the object: S(sx, sy)

• Translate the object back: T(qx, qy)

• The final scaling matrix can be written as
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(qx, qy)

Concatenation of matrices
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Revisit 2D Rotation

• The standard rotation matrix is used to rotate about 
the origin (0, 0)

• What if we want the object to be rotated w.r.t a specific 
pivot?
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Revisit 2D Rotation (cont.)

• Rotate about an arbitrary pivot point Q(qx, qy) by Ө

• Translate the objects so that Q will coincide with the 
origin: T(-qx, -qy)

• Rotate the object: R(Ө)

• Translate the object back: T(qx, qy)

• The final rotation matrix can be written as 
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(qx, qy)

(qx, qy)
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• A 3D transformation is represented as a 4x4 matrix, 
with homogeneous coordinate

Translation (3D) and Scaling (3D)
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2D 3D

translation
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Rotation (3D)
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2D 3D

rotation w.r.t 
x-axis

rotation w.r.t 
y-axis

rotation w.r.t 
z-axis
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Goals

• Learn how to build the transformation matrices

• Learn how to code with GLM matrices

• Learn how to concatenate the transformation
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GLM Matrix
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• GLM provides several classes to support matrices with 
different rows and columns

• Square matrix

• glm::mat2 (equals to glm::mat2x2)

• glm::mat3 (equals to glm::mat3x3)

• glm::mat4 (equals to glm::mat4x4)

• Non-square matrix

• glm::matmxn (m and n are in the range from 2 to 4)

• Declare a zero 4x4 matrix: glm::mat4x4(0.0f);

• Declare an identity 4x4 matrix: glm::mat4x4(1.0f);
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Matrix Representation: Column/Row Major 
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• A 2-dimensional matrix can be accessed by either 
column-major or row-major

• By default, OpenGL (and thus GLM) supplies matrix data 
in column-major

row-major column-major
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• glm::mat4x4  translate( const glm::mat4x4& m , 

const glm::vec3& v )

Translation Matrix
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returned 
translation matrix

translation vector

base matrix
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• If you print the matrix produced by glm::translate, you 
will get the following result

• If you want to build the matrix on your own, remember to 
transpose the matrix

Translation Matrix (cont.)
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Why? OpenGL and GLM use column-major representation!
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Translation Matrix (cont.)
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cube center (1.5, 2.0, 0.0) cube center (0.0, 0.0, 0.0)

apply a translation of (-1.5, -2.0, 0.0)
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• glm::mat4x4  scale( const glm::mat4x4& m , 

const glm::vec3& v )

Scaling Matrix
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returned 
scaling matrix

scaling vector

base matrix
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Scaling Matrix (cont.)
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cube center (1.5, 2.0, 0.0) cube center (3.0, 2.0, 0.0)

apply a scaling of (2.0, 1.0, 2.0)
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• glm::mat4x4  rotate( const glm::mat4x4& m , 

const float angle ,

const glm::vec3& axis )

Rotation Matrix

34

rotation w.r.t 
x-axis

rotation w.r.t 
y-axis

rotation w.r.t 
z-axis

returned 
rotation matrix

rotate axis

base matrix

rotate amount in radian
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3D Rotating (cont.)
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rotate w.r.t the global Y axis
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• The standard scaling matrix will only anchor at (0, 0)

3D Scaling in Place
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cube center at (1.5, 2.0, 0.0)

cube center at (3.0, 4.0, 0.0)
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• Scaling about an arbitrary pivot point Q(qx, qy)

• Translate the objects so that Q will coincide with the 
origin: T(-qx, -qy)

• Scale the object: S(sx, sy)

• Translate the object back: T(qx, qy)

• The final scaling matrix can be written as

3D Scaling in Place (cont.)
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(qx, qy)
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3D Scaling in Place (cont.)
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• The standard rotation matrix rotates about an axis

• Rotate about an arbitrary pivot point Q(qx, qy) by Ө

• Translate the objects so that Q will coincide with the 
origin: T(-qx, -qy)

• Rotate the object: R(Ө)

• Translate the object back: T(qx, qy)

• The final rotation matrix can be written as 

3D Rotating in Place (cont.)
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(qx, qy)

(qx, qy)
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3D Rotating in Place (cont.)

40

rotate in place!
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Where is the Camera and Projection?

• The typical flow of bringing a 3D point to the 2D screen 
involves the camera projection

• For now, we specify neither the camera nor the projection, 
so you can consider that we set the “projected” positions 
of the vertices directly

• In the next topic (camera), we will go through the full 
transformation
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