1S

Camera

Computer Graphics
Yu-Ting Wu

(Some of this slides are borrowed from Prof. Yung-Yu Chuang)

Computer Graphics 2025

Outline

Introduction to real-world cameras

Introduction to computer graphics cameras

Camera space and camera transformation

Projective cameras

* OpenGL Implementation

Computer Graphics 2025

Recap: 3D Scene Representation

 So far, we have introduced how to represent a virtual
3D world

Sofa, plant, bookshelf, and the room
vertex data = (vertex buffer)

vertex adjacency = (index buffer)
defined in Object Space

Objects are put into a shared
World Space -------====-====
by transformation

(translation, scaling, rotation)

3D virtual world

Computer Graphics 2025

Recap: Virtual Camera and Rendering

* In computer graphics, we generate an image from a
virtual 3D world using a virtual camera

] |
|
|
|
8
U

'
'
(

3D virtual world rendered image

Computer Graphics 2025

Recap: Rasterization and Projection

* OpenGL uses Rasterization to bring 3D shapes to the
2D screen

r

virtual film

virtual camera
_ Y,

Computer Graphics 2025

Where is the Camera and Projection?

» The typical flow of bringing a 3D point to the 2D screen
involves the camera projection

* For now, we specify neither the camera nor the projection,
so you can consider that we set the “projected” positions
of the vertices directly

o

www
TRITEN

viewing
frustum near
clip plane

Spoiler

for building scene

Object Space
(Local Space)

4
World Space

* There are other spaces

« We will introduce camera space,
clip space, and NDC today

for assisting

renderin
J Camera Space

(View, Eye Space)

EEEEEEEEEEE

0= S
: ¥ projection
i s .
i MODEL MATRIX s VIEW MATRIX Cllp Space
: Normalized Device Coordinate (NDC)
.
. PROJECTION MATRIX o Screen Space

5. SCREEN SPACE

for displaying

Computer Graphics 2025

Outline

Introduction to real-world cameras

Introduction to computer graphics cameras

Camera space and camera transformation

Projective cameras

* OpenGL Implementation

Computer Graphics 2025

Camera Trail

aaa——

__—\

scene film

Put a piece of film in front of an object

Pinhole Camera

pinhole camera

scene barrier film

Add a barrier to block off most of the rays
* [t reduces blurring

« The pinhole is known as the aperture
 The image is inverted

Computer Graphics 2025

Pinhole Camera (cont.)

 Shrink the aperture

0.6mm 0.35 mm

Why not make the aperture as small as possible?
* Less light gets through
 Diffraction effect

Computer Graphics 2025

Pinhole Camera (cont.)

 Shrink the aperture

2 mm I mm

0.6mm 0.35 mm

OPFTICA

COTUGmMAr

0.15S mm 0.07 mm

Computer Graphics 2025

Pinhole Camera (cont.)

Robert Rigby 5x4 Pinhole Camera

$200-5$700

002 HEIDI CRABBE

Camera with Lens

“circle of

focal length confusion

scene lens film

A lens focuses light onto the film
« There is a specific distance at which objects are “in focus”
« Other points project to a “circle of confusion” in the image

Current digital cameras replace the film with a sensor
array (CCD or CMOS)

Computer Graphics 2025

ith Lens

Cameraw

c
Q
N
>
Y—
C
@)
&)
Y
o
@
o
=
&)
@)
]
<))
-
©
O
<))
G—
Y
@)
L
)
Q.
)
(M)

15

Computer Graphics 2025

Exposure

» Exposure = aperture + shutter speed

» Aperture of diameter D restricts the range of rays
(aperture may be on either side of the lens)

 Shutter speed is the amount of time that light is allowed
to pass through the aperture

aperture

optical axis

Computer Graphics 2025

Exposure

« Aperture (in f stop)

QO

Full aperture Medium aperture Stopped down

« Shutter speed (in fraction of a second)

R

-

Blade (closing) Blade (open) Focal plane (closed) Focal plane (open)

Motion Blur and Depth of Field

o
e M ot I O n b I u r Slow shutterspeed Fast shutter speed

* Depth of field

1/2500 sec atf/ 1.8 1/500 sec atf/ 4.0

Computer Graphics 2025

More About Real-World Cameras

« For more details about real-world cameras, please refer
to the recording of my course, “Multimedia Technology
and Application”

e Course material link:

 Part 1: https://reurl.cc/GNTgNW
« Part 2: https://reurl.cc/VW9Zm5

 Part 3: https://reurl.cc/MzemM4

https://reurl.cc/GN1qNW
https://reurl.cc/VW9Zm5
https://reurl.cc/MzemM4

Computer Graphics 2025

Outline

Introduction to real-world cameras

Introduction to computer graphics cameras

Camera space and camera transformation

Projective cameras

* OpenGL Implementation

S
M 4 N
$
s I
4 O
4 o S
2 0 =
O N - ©
© N
—]
= 3|5 5
tg% 2
o O | S
m (q0]
[= = -
g £\
)
C
=)
mg
.I.m
Sm
S ¢
(@)
sen
V.g.m
@ O O
= o =
> 2 5 5
g 2 £ o
O = ©
CW © ‘l
o S © ©
o = £
° > W

Computer Graphics 2025

Computer Graphics Cameras

« Mimic the real-world functionalities of a real-world camera

« In offline (high-quality) graphics, we can simulate all the
imaging processes of a camera using ray tracing

16 mm fisheye

Computer Graphics 2025

Computer Graphics Cameras (cont.)

« Mimic the real-world functionalities of a real-world camera

« In offline (high-quality) graphics, we can simulate all the
imaging processes of a camera using ray tracing

* |In interactive or real-time graphics, we usually use a
pinhole camera for its simplicity of projection

« We can also dodge the drawbacks of real pinhole cameras
 Avoid upside down images by putting the film in front of

the camera
image plane
%: > fov/2 "

z=0

Computer Graphics 2025

Computer Graphics Camera (cont.)

 Every object will always be in focus

Computer Graphics 2025

Camera Properties

« Camera position viewing volume

(view frustum)

* Viewing direction

* Field of view
* In angle

« Aspect ratio
+ Width/Height

 View volume
* Near clip plane
 Far clip plane

T NYiewing direction

field of view (FOV.).--":::“:-'V of?
c?

M

Computer Graphics 2025

Outline

Introduction to real-world cameras

Introduction to computer graphics cameras

Camera space and camera transformation

Projective cameras

* OpenGL Implementation

Computer Graphics 2025

Camera (View) Transform

« The camera can be at an arbitrary position and have an
arbitrary viewing direction in the world space

 This makes the projection difficult in terms of mathematics

T2 e - - “i =
- e 2)
ol | O ST . -
5 -4 - D
S —
i = - .
u ‘. \l “' : -
World Space \ .
.
Ivn '\\ \ \) __,—"
I‘ \ 9

Computer Graphics 2025

Camera (View) Transform (cont.)

» To keep the math of projection simpler, we additionally
define a camera (view, eye) space

 In the camera space, the camera is at the origin (0, 0, 0)
and looking at the negative Z-axis

Normalized Device Coordinates (NDC)

/’I-E-C-:E ght -Z

.- ¥

- e E ~
,-': . _._-x

Camera frustum

{2,2,2)

near plane far plane

eve position

Computer Graphics 2025

Camera (View) Transform (cont.)

« OpenGL itself is not familiar with the concept of a camera

* Instead, we simulate one by moving all objects in the
scene in the reverse direction ’

Fasition: (00, 00 0.0)

Rotation. (0.0, 0.0 0.0) N
£

Computer Graphics 2025

Camera (View) Transform (cont.)

 For each object, we transform its world coordinate to
the camera coordinate by

* Moving it with the inverse translation of the camera’s
position
* Rotate the object to match the camera’s local frame

Viewing (2)
Perspective projection (P) Ca(
« Formed by the view direction (D), right (R), and up (U) vectors of the camera
« The three axes of the local frame should be orthogonal

Computer Graphics 2025

Camera (View) Transform (cont.)

 Set camera’s local frame

« However, it is usually difficult for a user to specify an
orthogonal basis

« OpenGL will do it for you (with the Gram-Schmidt process)

https://www.youtube.com/watch?v=PzqVLldlHTE&list=PLJV_el3uVTsNmr39gwbyV-0KjULUsN7fW&index=33
https://www.youtube.com/watch?v=PzqVLldlHTE&list=PLJV_el3uVTsNmr39gwbyV-0KjULUsN7fW&index=33
https://www.youtube.com/watch?v=PzqVLldlHTE&list=PLJV_el3uVTsNmr39gwbyV-0KjULUsN7fW&index=33

Computer Graphics 2025

Camera (View) Transform (cont.)

 Steps for setting camera’s local frame

« Determine the viewing dir. with the position of Up (Y)
the camera and a target point
viewing direction = normalize(cameraPos - targetPos) Up (temp.)

« Assume a temporal “up vector”

* In most cases, we use the up direction (0, 1, 0) .
in the world frame Right (X)

 Obtain the right vector by computing the cross
product of the up vector and the viewing dir.

camera right = normalize(cross(up, viewing direction))

camera
position

* Obtain the new up vector by computing the target point

cross product of the viewing dir. and the right
vector

camera up = normalize(cross(viewing direction, camera right))

Computer Graphics 2025

Camera (View) Transform (cont.)

« Camera (view) transformation

right vector (X)
up vector (Y)

viewing vector (Z)

R, R, R, 0][1 0 0 [P,
U, U, 0. ollo 10 |-P,
D. D, D) ollo 0o 1 |-P.
0 0 0 1/]lo 00 1

rotation matrix

Y
b +7
~{0,0,0)

. . -¥
2. Direction

3. Right

(0,1,0)
y #
+Z
(0,0,0)
=X

(P, Py, P,) is the
camera’s position

translation matrix

Y \
+Z

(0,0,0)

-X
4, Up

Computer Graphics 2025

Camera (View) Transform (cont.)

right vector Rm Ry Rz Of |z
up vector m 0 Yy
viewing vector P Dy Dz 0 <
0O 0 0 T1f]1

- 4 L - (0,1,0)

U
Camera Space
Vv

R

p(X, Y, Z) = (31 1, '2)

o~
n

+X
(1,0,0)

World Space

+Z
(0,0,1)

Computer Graphics 2025

Outline

Introduction to real-world cameras

Introduction to computer graphics cameras

Camera space and camera transformation

Projective cameras

* OpenGL Implementation

Computer Graphics 2025

Projective Camera Models

Perspective projection (P)

Computer Graphics 2025

Orthographic Projection

 Parallel projection with projectors perpendicular to the
projection plane

* Preserve distance and angle
 Often used as front, side, and top views for 3D design

B i
il

L i
1

=

Computer Graphics 2025

Orthographic Projection (cont.)

* Need to define the viewing volume with its six planes:
left, right, top, bottom, near, and far

« The viewing volume (frustum) is cube-like

« Map the xyz-coordinate to the range [-1, 1]

(-1,1,1)

(r, b, -n)

(1,-1,-1)

Computer Graphics 2025

Orthographic Projection (cont.)

- Letthel, r, t, b, n, f be the boundaries of the left, right,
top, bottom, near, and far planes

[<z <r) 0<z—-1<r—|
- 0<iTlorl e g<o®Thco

r—I r—I
->—1§2($_l)—1§1 - 1< B Ty

r—1 r—1 r—I

Computer Graphics 2025

Orthographic Projection (cont.)

- Letthel, r, t, b, n, f be the boundaries of the left, right,
top, bottom, near, and far planes

« An orthographic projection matrix can be written as

- 2 r-+1 =
0 5 0 —5
0 0 = -5

0 0 0 1]

Computer Graphics 2025

Perspective Projection

* In our real lives, the objects that are farther away appear
much smaller

» This effect is called perspective

A perspective projection tries to mimic the vision of
human eyes

*

' 4

(1,-1,-1)

Computer Graphics 2025

Perspective Projection (cont.)

« Four components for the perspective projection matrix
* The aspect ratio of the screen
« The ratio between the width and the height (W/H)
* The vertical field of view

« The vertical angle of the camera through which we are
looking at the world

* The location of the near Z plane
« Used to clip objects that are too close to the camera
* The location of the far Z plane
« Used to clip objects that are too distant from the camera

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix
» The projection plane and the projection window

projection plane

\
\ projection window

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix
« Determine the height of the projection window as 2
» The width of the projection window becomes 2 times the
aspect ratio (ar)

+1

i aspect ratio (ar) = W/H

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix

« We can determine the distance from the camera to the
projection window based on the field of view (fov)

a
tan(—) =
- an(z)

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix

« Assume we want to find the projected coordinate (xp, yp)
of a 3D point (x, Y, 2)

» The y component can be derived as ... Y _ Y

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix
* Do the same derivation for the x component
* Note in the x-direction we have to multiply the aspect ratio ar
 After that, we can obtain the following equations

+1 T, — L
Poar (—2) - tan($)
-ar ar
Y
yp — a
—Z taﬂ(g)

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix
* Fill-in the matrix, based on the following conditions
L Y
ar - (—2)) -/tan(3) —z|-/tan($5)

Ip:

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix
* Fill-in the matrix, based on the following conditions
L Y
ar - (—2)) -/tan(3) —z|-/tan($5)

Ip:

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix

* Fill-in the matrix, based on the following conditions
+ Assume the Z function has a shape f(z) = A(—2) + B
 After perspective division, it becomes

B
Zp:A—?

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix
* Fill-in the matrix, based on the following conditions

B B
f(—nearZ) = —1 wmp A — =—1m) A=-1-
—nearZ nearZz
B
N _ - = A=1-
f(=farZ)=1 ==y A ~tarZ 1 - farZz
5 _ B B
N farZ nearZ
-B'neaTZ_B'faTZ_Q BZZ-fG,T'Z-fa,T‘Z
farZ - farZ B = nearZ — farz
—nearZ — farZ
== B(ncarZ — farZ) =2- farZ - farZ A= e Z = JarZ

Computer Graphics 2025

Perspective Projection (cont.)

 Derivation of the perspective projection matrix
* Fill-in the matrix, based on the following conditions

p— — — 1 7]
.’l?p a,fr.tan(%) 0 0 0 L
Yp | _ 0 tan(%) U . Y
—nearZ—farZ 2-farZ-nearZ
Zp 0 O ?’LBCL?"Z_]CGTZ nEZ(I,’J"Z—fG?"Z Z
1] | o 0 1 UNENIR

Computer Graphics 2025

Camera Models Comparison

Computer Graphics 2025

Outline

Introduction to real-world cameras

Introduction to computer graphics cameras

Camera space and camera transformation

Projective cameras

* OpenGL Implementation

Computer Graphics 2025

Ortho Projection Matrix

(1.1.1) - 2 r4[-
o 2 o i
) o o
00 = -
0 0 0 1

« glm:mat4x4 ortho(const float left, const float right,
const float bottom, const float top,
const float near, const float far)

glm::mat4x4 goP = glm::ortho(-5.0f, 5.0f, -5.0f, 5.0f, 0.01f, 100.0f);

Computer Graphics 2025

Perspective Projection Matrix

B 1
ar-tan(5) 0 0 U
0 tan(%) 0 0
0 0 —nearZ —farZ 2-farZ-nearZ
nearZ—farZz nearZ —farZ
0 0 1 0

 glm::mat4x4 perspective(const f

oat fovy,

const float aspectRatio,
use radian, not degree const float near ,
float fovy =[glm::radians(30.0f);|
float aspectRatio - [640.0f / s60.67;] const float far)

float nearZ = 0.1f; width / height

float farZ = 100.0f;
glm::mat4x4d gP = glm::perspective(fovy, aspectRatio, nearZ, farZ);

Computer Graphics 2025

The Full Vertex Transform Pipeline

Object Space
(Local Space)
&
o After applying world transform
World Space (translation, scaling, rotation)
&

Camera Space
(View, Eye Space)

P projection

— — — After applying camera transform

Clip Space — — — After applying the projection

Normalized Device Coordinate (NDC) — — After applying perspective division
XYZ in the range [-1, 1]

The Z component is kept for
Screen Space depth comparison

(closest surface to the camera)

Apply the Transformation on CPU

« To transform a vertex from object space to clip space,
we multiply its position with the model-view-projection
(MVP) matrix

« We can pre-multiply part of the matrix if some of them
are fixed

« For example, we can pre-multiply the camera (view) and
the projection matrix to form a VP matrix, and change the
model matrix to perform object animation

« Remember to do the perspective division

Apply the Transformation on CPU (cont.)

glm::matéx4 M = glm::rotate(glm::mat4x4(1.0f), glm::radians(30.0f), glm::vec3(0, 1, @));

glm::vec3 cameraPos = glm::vec3(0.8f, 8.5F, 2.6f);

glm::vec3 cameraTarget = glm::vec3(0.0f, 0.0f, 0.8f);

glm::vec3 cameralp = glm::vec3(8.6f, 1.6f, 0.0f);

glm::mat4x4 V = glm::lookAt(cameraPos, cameraTarget, cameralp);

float fov = 40.0F;

float aspectRatio = (float)screenWidth / (float)screenHeight;
float zNear = 0.1fF;

float zFar = 100.0f;

glm::matéx4d P = glm::perspective(glm:: radians(fov), aspectRatio, zNear, zFar);

glm::mataxd MVP = P = V % M;

// Apply CPU transformation.
mesh->ApplyTransformCPU(MVP) ;

Apply the Transformation on CPU (cont.)

void ApplyTransformCPU(std::vector<glm::vec3>& vertexPositions, const glm::maté4x4& mvpMatrix)
{
for (unsigned int i = 8 ; i < vertexPositions.size(); +1i) {
glm::vec4 p = mvpMatrix *|glm::vec4(vertexPositions[i], 1.0f);

if (p.w == 0.0F) {
Eﬁfﬁ;g;’;ﬁi&{i"f“ « inv:| * Auseful coding technique available
vertexPositions[i].y = p.y * inv; in shader programming
, vertexfositions(il.z = p.z * ii| . |t combines a 3d vector and a 1d
} berspective division scalar to form a 4d vector
¥ * You can also write

glm::vec4(vertexPositionsli].x,
vertexPositionslil.y,
vertexPositionsli].z,
1.0f);

Computer Graphics 2025

Apply the Transformation on CPU (cont.)

Now we get a cube with the correct aspect ratio

61

Apply the Transformation on CPU

 So far, we have performed the transformation of vertices
on the CPU

Upload Data

- >
Vertex 7
Data

Parameters —/
Set .
Parameters

GPU

Vertex attributes
Position

Normal

Texture coordinate

Apply the Transformation on GPU

« However, doing this job on CPU is not cost-effective
« CPU is good at doing sequential, complex jobs
» But vertex transform is simple and can be done in parallel

* Next class, we will introduce the GPU graphics pipeline
and the vertex shaders for parallel processing

Upload Data
’ { Transform }

Parameters | s,
Set

Parameters

Vertex
Data

Computer Graphics 2025

ANY QUESTIONS2

	投影片 1
	投影片 2: Outline
	投影片 3: Recap: 3D Scene Representation
	投影片 4: Recap: Virtual Camera and Rendering
	投影片 5: Recap: Rasterization and Projection
	投影片 6: Where is the Camera and Projection?
	投影片 7: Spoiler
	投影片 8: Outline
	投影片 9: Camera Trail
	投影片 10: Pinhole Camera
	投影片 11: Pinhole Camera (cont.)
	投影片 12: Pinhole Camera (cont.)
	投影片 13: Pinhole Camera (cont.)
	投影片 14: Camera with Lens
	投影片 15: Camera with Lens
	投影片 16: Exposure
	投影片 17: Exposure
	投影片 18: Motion Blur and Depth of Field
	投影片 19: More About Real-World Cameras
	投影片 20: Outline
	投影片 21: Recap: Ways to Simulate Light Transport
	投影片 22: Computer Graphics Cameras
	投影片 23: Computer Graphics Cameras (cont.)
	投影片 24: Computer Graphics Camera (cont.)
	投影片 25: Camera Properties
	投影片 26: Outline
	投影片 27: Camera (View) Transform
	投影片 28: Camera (View) Transform (cont.)
	投影片 29: Camera (View) Transform (cont.)
	投影片 30: Camera (View) Transform (cont.)
	投影片 31: Camera (View) Transform (cont.)
	投影片 32: Camera (View) Transform (cont.)
	投影片 33: Camera (View) Transform (cont.)
	投影片 34: Camera (View) Transform (cont.)
	投影片 35: Outline
	投影片 36: Projective Camera Models
	投影片 37: Orthographic Projection
	投影片 38: Orthographic Projection (cont.)
	投影片 39: Orthographic Projection (cont.)
	投影片 40: Orthographic Projection (cont.)
	投影片 41: Perspective Projection
	投影片 42: Perspective Projection (cont.)
	投影片 43: Perspective Projection (cont.)
	投影片 44: Perspective Projection (cont.)
	投影片 45: Perspective Projection (cont.)
	投影片 46: Perspective Projection (cont.)
	投影片 47: Perspective Projection (cont.)
	投影片 48: Perspective Projection (cont.)
	投影片 49: Perspective Projection (cont.)
	投影片 50: Perspective Projection (cont.)
	投影片 51: Perspective Projection (cont.)
	投影片 52: Perspective Projection (cont.)
	投影片 53: Camera Models Comparison
	投影片 54: Outline
	投影片 55: Ortho Projection Matrix
	投影片 56: Perspective Projection Matrix
	投影片 57: The Full Vertex Transform Pipeline
	投影片 58: Apply the Transformation on CPU
	投影片 59: Apply the Transformation on CPU (cont.)
	投影片 60: Apply the Transformation on CPU (cont.)
	投影片 61: Apply the Transformation on CPU (cont.)
	投影片 62: Apply the Transformation on CPU
	投影片 63: Apply the Transformation on GPU
	投影片 64

