
Advanced Shaders

Computer Graphics

Yu-Ting Wu

1



Computer Graphics 2025

Recap: OpenGL 1.1 (Fixed Function Pipeline)

2

Vertex
Data

Frame 
Buffer

Primitive 
Processing

Transform 
and 

Lighting

Primitive 
Assembly

Rasterizer

Texture 
Environment

Color Sum Fog Alpha Test

Depth
and

Stencil 

Color Buffer 
Blending

Dither

• Used when OpenGL was first introduced 

• All the functions performed by OpenGL are fixed and 
could not be modified except through the manipulation 
of the rendering states



Computer Graphics 2025

Recap: OpenGL 2.0

• Introduce Vertex and Fragment shaders to replace 
some fixed stages for providing more flexibility

3

Vertex
Data

Frame 
Buffer

Primitive 
Processing

Vertex 
Shader

Primitive 
Assembly

Rasterizer

Fragment 
Shader

Depth
and

Stencil 

Color Buffer 
Blending

Dither



Computer Graphics 2025

Important Shader Timeline

• OpenGL 1.0 (1992): fixed function pipeline

• OpenGL 2.0 (2004): vertex/fragment shader

• OpenGL 3.2 (2009): geometry shader

• OpenGL 4.0 (2010): tessellation shader

• OpenGL 4.3 (2012): compute shader

4



Computer Graphics 2025

5

Geometry Shader



Computer Graphics 2025

OpenGL 3.2: Geometry Shader

• Vertex shader processes each vertex separately

• What if we would like to manipulate a primitive, such 
as a line or a triangle?

• For this reason, OpenGL 3.2 adds Geometry shader for 
per-primitive processing

6

Vertex
Data

Frame 
Buffer

Primitive 
Processing

Vertex 
Shader

Primitive 
Assembly

Rasterizer
Fragment 

Shader
Raster

Operations

Geometry 
Shader



Computer Graphics 2025

Geometry Shader

• An optional stage

• Take a set of vertices that form a single primitive as 
input, such as

• Points

• Lines

• Triangles

• A geometry shader can transform the primitives with 
different transforms for each vertex or 

• Generate new primitives (on GPU)

7



Computer Graphics 2025

Geometry Shader (cont.)

• An example for the overall picture

• Input primitive streams: 4 points

8



Computer Graphics 2025

Geometry Shader (cont.)

• An example for the overall picture

• For each primitive (in this case, a point), generate 5 
vertices with different offsets

9



Computer Graphics 2025

Geometry Shader (cont.)

• An example for the overall picture

• Output

10



Computer Graphics 2025

Geometry Shader (cont.)

• Code snippet

• Vertex data

• Vertex Shader

11



Computer Graphics 2025

Geometry Shader (cont.)

• Code snippet

• Geometry Shader

12



Computer Graphics 2025

Applications: Particle System

• https://youtu.be/tUAAltGNTaI

13

(0, 0) (1, 0)

(1, 1)(0, 1)

https://youtu.be/tUAAltGNTaI
https://youtu.be/tUAAltGNTaI


Computer Graphics 2025

14

Tessellation



Computer Graphics 2025

Background

• Recall that using more triangles can lead to higher-quality 
meshes; however, at the expense of taking more time to 
render

15



Computer Graphics 2025

Background (cont.)

• When we look at a complex model up close, we prefer to 
use a highly-detailed model

• When we look at it from a great distance, we prefer to use a 
rough one because it only projects to a few pixels

• One solution to this problem is using Levels of Detail (LOD)

16



Computer Graphics 2025

Background (cont.)

• Level of Details (LOD)

• Artists create the same model at multiple levels of detail 

17



Computer Graphics 2025

Background (cont.)

• Level of Details (LOD)

• Artists create the same model at multiple levels of detail 

• We can then select the version to use based on some 
criterion, such as the distance from the camera

18



Computer Graphics 2025

Background (cont.)

• Level of Details (LOD)

• Artists create the same model at multiple levels of detail 

• We can then select the version to use based on some 
criterion, such as the distance from the camera

• However, this requires more artist resources, and the level 
of models might dynamically change over time

• The change of LOD should also be smooth!

• Can we start with a low polygon model and subdivide each 
triangle on the fly into smaller triangles? The answer is 
tessellation!

19



Computer Graphics 2025

OpenGL 4.0: Tessellation

• OpenGL 4.0 adds tessellation into the graphics pipeline

• It comprises two new shaders, Tessellation Control 
Shader (TCS) and Tessellation Evaluation Shader (TES), 
and a fixed stage, Primitive Generation

20

Vertex
Data

Frame 
Buffer

Primitive 
Processing

Vertex 
Shader

Primitive 
Generation

Rasterizer
Fragment 

Shader
Raster

Operations

Tessellation
Control 
Shader

Geometry 
Shader

Primitive 
Assembly

Tessellation
Evaluation 

Shader



Computer Graphics 2025

OpenGL Tessellation (cont.)

• Overview

21

original patch
(line, triangle)

subdivided
adjust vertex positions 

based on some formulas
(e.g., Bezier curve)



Computer Graphics 2025

OpenGL Tessellation (cont.)

• Overview

22

Primitive 
Generation

Tessellation
Control Shader

Tessellation
Evaluation 

Shader

3 3

33

determine 
tessellation levels

hardware 
interpolation

evaluate
vertex position



Computer Graphics 2025

OpenGL Tessellation (cont.)

• Advantages

• Send less vertex/index data from CPU to GPU (save 
bandwidth)

• More flexible (and smooth) level-of-details (LOD)

23



Computer Graphics 2025

OpenGL Tessellation (cont.)

• An example result: no tessellation

24



Computer Graphics 2025

OpenGL Tessellation (cont.)

• An example result: with tessellation shader

25



Computer Graphics 2025

26

Compute Shader



Computer Graphics 2025

Background

• Traditionally the graphics card (GPU) has been a 
rendering co-processor which is handling graphics

• It got more and more common to use graphics cards for 
other (not necessarily graphics-related) computational 
tasks, called General Purpose Computing on Graphics 
Processing Units (GPGPU)

• Higher parallelism

• Faster floating-point calculation

• In OpenGL 4.3, Compute Shaders are introduced for 
computing arbitrary information

27



Computer Graphics 2025

Advantages of GPGPU 

• Before GPGPU (including CUDA, OpenCL, and Compute 
Shader), if you want to use GPU for performance 
improvement, you need to translate the target problem 
into a rendering problem

• For example, to filter an image, you need to

• Draw a quad (two triangles) into a frame buffer object

• Bind the input image as a texture

• Lookup the texture and perform filtering in the fragment 
shader

28



Computer Graphics 2025

Compute Shader v.s. Other Shaders

• Compute shaders are NOT part of the graphics pipeline

• It uses a function (kernel) to run over a set of the input 
data (stream) and output a set of data (stream), without 
any assumptions of the data types and format

• You can consider the vertex/fragment shaders as 
kernels with fixed data types (vertex/fragment data)

• Each element is processed independently in parallel

• Directly make changes on the GPU memory, similar to a 
void function

29



Computer Graphics 2025

A Simple Compute Shader

30

(kernel, executed by each data item)



Computer Graphics 2025

Compute Shader v.s. CUDA & OpenCL

• There are more popular GPGPU APIs like NVIDIA CUDA 
and OpenCL offer more features as they are aimed at 
heavyweight GPGPU projects

• The OpenGL Compute Shader is intentionally designed 
to incorporate other OpenGL functionality and uses 
GLSL to make it easier to integrate with the existing 
OpenGL graphics pipeline/application

• Common applications of Compute Shader

• Physical simulation

• Real-time image processing / texture editing

• Collision detection

• GPU ray tracer

31



Computer Graphics 2025

Summary

• The input and output of the six different shaders in 
OpenGL

32



Computer Graphics 2025

33


	投影片 1
	投影片 2: Recap: OpenGL 1.1 (Fixed Function Pipeline)
	投影片 3: Recap: OpenGL 2.0
	投影片 4: Important Shader Timeline
	投影片 5
	投影片 6: OpenGL 3.2: Geometry Shader
	投影片 7: Geometry Shader
	投影片 8: Geometry Shader (cont.)
	投影片 9: Geometry Shader (cont.)
	投影片 10: Geometry Shader (cont.)
	投影片 11: Geometry Shader (cont.)
	投影片 12: Geometry Shader (cont.)
	投影片 13: Applications: Particle System
	投影片 14
	投影片 15: Background
	投影片 16: Background (cont.)
	投影片 17: Background (cont.)
	投影片 18: Background (cont.)
	投影片 19: Background (cont.)
	投影片 20: OpenGL 4.0: Tessellation
	投影片 21: OpenGL Tessellation (cont.)
	投影片 22: OpenGL Tessellation (cont.)
	投影片 23: OpenGL Tessellation (cont.)
	投影片 24: OpenGL Tessellation (cont.)
	投影片 25: OpenGL Tessellation (cont.)
	投影片 26
	投影片 27: Background
	投影片 28: Advantages of GPGPU 
	投影片 29: Compute Shader v.s. Other Shaders
	投影片 30: A Simple Compute Shader
	投影片 31: Compute Shader v.s. CUDA & OpenCL
	投影片 32: Summary
	投影片 33

