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Recap: OpenGL 1.1 (Fixed Function Pipeline)
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• Used when OpenGL was first introduced 

• All the functions performed by OpenGL are fixed and 
could not be modified except through the manipulation 
of the rendering states
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Recap: OpenGL 2.0

• Introduce Vertex and Fragment shaders to replace 
some fixed stages for providing more flexibility
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Important Shader Timeline

• OpenGL 1.0 (1992): fixed function pipeline

• OpenGL 2.0 (2004): vertex/fragment shader

• OpenGL 3.2 (2009): geometry shader

• OpenGL 4.0 (2010): tessellation shader

• OpenGL 4.3 (2012): compute shader
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Geometry Shader
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OpenGL 3.2: Geometry Shader

• Vertex shader processes each vertex separately

• What if we would like to manipulate a primitive, such 
as a line or a triangle?

• For this reason, OpenGL 3.2 adds Geometry shader for 
per-primitive processing
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Geometry Shader

• An optional stage

• Take a set of vertices that form a single primitive as 
input, such as

• Points

• Lines

• Triangles

• A geometry shader can transform the primitives with 
different transforms for each vertex or 

• Generate new primitives (on GPU)
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Geometry Shader (cont.)

• An example for the overall picture

• Input primitive streams: 4 points
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Geometry Shader (cont.)

• An example for the overall picture

• For each primitive (in this case, a point), generate 5 
vertices with different offsets
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Geometry Shader (cont.)

• An example for the overall picture

• Output
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Geometry Shader (cont.)

• Code snippet

• Vertex data

• Vertex Shader
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Geometry Shader (cont.)

• Code snippet

• Geometry Shader

12



Computer Graphics 2025

Applications: Particle System

• https://youtu.be/tUAAltGNTaI
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Tessellation
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Background

• Recall that using more triangles can lead to higher-quality 
meshes; however, at the expense of taking more time to 
render
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Background (cont.)

• When we look at a complex model up close, we prefer to 
use a highly-detailed model

• When we look at it from a great distance, we prefer to use a 
rough one because it only projects to a few pixels

• One solution to this problem is using Levels of Detail (LOD)
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Background (cont.)

• Level of Details (LOD)

• Artists create the same model at multiple levels of detail 
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Background (cont.)

• Level of Details (LOD)

• Artists create the same model at multiple levels of detail 

• We can then select the version to use based on some 
criterion, such as the distance from the camera
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Background (cont.)

• Level of Details (LOD)

• Artists create the same model at multiple levels of detail 

• We can then select the version to use based on some 
criterion, such as the distance from the camera

• However, this requires more artist resources, and the level 
of models might dynamically change over time

• The change of LOD should also be smooth!

• Can we start with a low polygon model and subdivide each 
triangle on the fly into smaller triangles? The answer is 
tessellation!
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OpenGL 4.0: Tessellation

• OpenGL 4.0 adds tessellation into the graphics pipeline

• It comprises two new shaders, Tessellation Control 
Shader (TCS) and Tessellation Evaluation Shader (TES), 
and a fixed stage, Primitive Generation
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OpenGL Tessellation (cont.)

• Overview
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OpenGL Tessellation (cont.)

• Overview
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OpenGL Tessellation (cont.)

• Advantages

• Send less vertex/index data from CPU to GPU (save 
bandwidth)

• More flexible (and smooth) level-of-details (LOD)
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OpenGL Tessellation (cont.)

• An example result: no tessellation
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OpenGL Tessellation (cont.)

• An example result: with tessellation shader
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Compute Shader
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Background

• Traditionally the graphics card (GPU) has been a 
rendering co-processor which is handling graphics

• It got more and more common to use graphics cards for 
other (not necessarily graphics-related) computational 
tasks, called General Purpose Computing on Graphics 
Processing Units (GPGPU)

• Higher parallelism

• Faster floating-point calculation

• In OpenGL 4.3, Compute Shaders are introduced for 
computing arbitrary information
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Advantages of GPGPU 

• Before GPGPU (including CUDA, OpenCL, and Compute 
Shader), if you want to use GPU for performance 
improvement, you need to translate the target problem 
into a rendering problem

• For example, to filter an image, you need to

• Draw a quad (two triangles) into a frame buffer object

• Bind the input image as a texture

• Lookup the texture and perform filtering in the fragment 
shader
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Compute Shader v.s. Other Shaders

• Compute shaders are NOT part of the graphics pipeline

• It uses a function (kernel) to run over a set of the input 
data (stream) and output a set of data (stream), without 
any assumptions of the data types and format

• You can consider the vertex/fragment shaders as 
kernels with fixed data types (vertex/fragment data)

• Each element is processed independently in parallel

• Directly make changes on the GPU memory, similar to a 
void function
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A Simple Compute Shader
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(kernel, executed by each data item)
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Compute Shader v.s. CUDA & OpenCL

• There are more popular GPGPU APIs like NVIDIA CUDA 
and OpenCL offer more features as they are aimed at 
heavyweight GPGPU projects

• The OpenGL Compute Shader is intentionally designed 
to incorporate other OpenGL functionality and uses 
GLSL to make it easier to integrate with the existing 
OpenGL graphics pipeline/application

• Common applications of Compute Shader

• Physical simulation

• Real-time image processing / texture editing

• Collision detection

• GPU ray tracer
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Summary

• The input and output of the six different shaders in 
OpenGL
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