1S

Advanced Shaders

Computer Graphics
Yu-Ting Wu

Computer Graphics 2025

Recap: OpenGL 1.1 (Fixed Function Pipeline)

« Used when OpenGL was first introduced

« All the functions performed by OpenGL are fixed and
could not be modified except through the manipulation
of the rendering states

Transform

Vertex Primitive Primitive :
Data » Processing » : ancf' » Assembly » Rasterizer [
Lighting
Texture
Depth
Color Buffer : Frame
and Blending Dither » Buffer

Stencil

Computer Graphics 2025

Recap: OpenGL 2.0

* Introduce Vertex and Fragment shaders to replace
some fixed stages for providing more flexibility

Vertex Primitive Vertex Primitive :

Color Buffer . Frame
=) 4 Dither | 2B

Fragment Vg
. Shader » e .
Stencil

Blending

Computer Graphics 2025

Important Shader Timeline

« OpenGL 1.0 (1992): fixed function pipeline

« OpenGL 2.0 (2004): vertex/fragment shader
« OpenGL 3.2 (2009): geometry shader

« OpenGL 4.0 (2010): tessellation shader

« OpenGL 4.3 (2012): compute shader

Computer Graphics 2025

Geometry Shader

Computer Graphics 2025

OpenGL 3.2: Geometry Shader

» Vertex shader processes each vertex separately

« What if we would like to manipulate a primitive, such
as a line or a triangle?

* For this reason, OpenGL 3.2 adds Geometry shader for
per-primitive processing

Primitive » Vertex Geometry Primitive 0
Processing Shader Shader Assembly

: Fragment Raster Frame
l» Rasterizer » Shader - Operations » Buffer

Vertex
Data »

Geometry Shader

« An optional stage

» Take a set of vertices that form a single primitive as
input, such as

* Points
* Lines
 Triangles

« A geometry shader can transform the primitives with
different transforms for each vertex or

« Generate new primitives (on GPU)

Geometry Shader (cont.)

* An example for the overall picture
 Input primitive streams: 4 points

Geometry Shader (cont.)

* An example for the overall picture

« For each primitive (in this case, a point), generate 5
vertices with different offsets

5

Computer Graphics 2025

Geometry Shader (cont.)

* An example for the overall picture
« Output

10

Geometry Shader (cont.)

» Code snippet
* Vertex data

float points[] = {
-0.5f, 0.5f,
0.5f, 0.5f,
0.5f, -0.5f,
-0.5f, -0.5f

glDrawArrays(GL_POINTS, 0, 4);

* Vertex Shader

#version 330 core
layout (location = @) in vec2 aPos;

void main()

{

gl Position = vec4(aPos.x, aPos.y, 0.0, 1.90);

Geometry Shader (cont.)

» Code snippet
« Geometry Shader

#version 330 core
layout (points) in;
layout (triangle_strip, max_vertices

void build house(vec4 position)

{

gl Position = position + vec4(-0.

EmitVertex();

gl Position = position + vec4(0.
EmitVertex();

gl Position = position + vec4(-0.
EmitVertex();

gl Position = position + vec4(9.
EmitVertex();

gl Position = position + vec4(@.
EmitVertex();

EndPrimitive();

}

void main() {
build house(gl in[@©].gl Position);
}

Computer Graphics 2025

12

Computer Graphics 2025

Applications: Particle System

* https://youtu.be/tUAAItGNTal

https://youtu.be/tUAAltGNTaI
https://youtu.be/tUAAltGNTaI

Computer Graphics 2025

Tessellation

Computer Graphics 2025

Background

 Recall that using more triangles can lead to higher-quality
meshes; however, at the expense of taking more time to

render

B sy
SUEKDAN
LAY, s S
AV

< P

Computer Graphics 2025

Background (cont.)

 When we look at a complex model up close, we prefer to
use a highly-detailed model

 When we look at it from a great distance, we prefer to use a
rough one because it only projects to a few pixels

@ @

 One solution to this problem is using Levels of Detail (LOD)

Computer Graphics 2025

Background (cont.)

* Level of Details (LOD)
* Artists create the same model at multiple levels of detail

Level of detail Level of detail Level of detail Level of detail

0 (2 3

Computer Graphics 2025

Background (cont.)

* Level of Details (LOD)
* Artists create the same model at multiple levels of detail

« We can then select the version to use based on some
criterion, such as the distance from the camera

&
TUDgIft
S

Computer Graphics 2025

Background (cont.)

* Level of Details (LOD)
* Artists create the same model at multiple levels of detail

« We can then select the version to use based on some
criterion, such as the distance from the camera

 However, this requires more artist resources, and the level
of models might dynamically change over time

* The change of LOD should also be smooth!

« Can we start with a low polygon model and subdivide each
triangle on the fly into smaller triangles? The answer is
tessellation!

Computer Graphics 2025

OpenGL 4.0: Tessellation

* OpenGL 4.0 adds tessellation into the graphics pipeline

* [t comprises two new shaders, Tessellation Control
Shader (TCS) and Tessellation Evaluation Shader (TES),
and a fixed stage, Primitive Generation

Tessellation

Vertex » Prlmltl\{e » Vertex Control Prlmltlye

Data Processing Shader Shader Generation

Tessellation
i Evaluation
Shader

Geometry » Primitive
Shader Assembly

: Fragment Raster Frame
l- Rasterizer » Shader » Operations » Buffer

Computer Graphics 2025

OpenGL Tessellation (cont.)

 Qverview

original patch
(line, triangle)

adjust vertex positions
based on some formulas
(e.g., Bezier curve)

subdivided

Computer Graphics 2025

OpenGL Tessellation (cont.)

 Overview

Tessellation
Evaluation
Shader

Tessellation Primitive
Control Shader Generation

determine hardware evaluate
tessellation levels interpolation vertex position

P(u)y=(1-u)’ P, +3u(l-u)* B +3u’>(1-u)P, +u’P,

2

Computer Graphics 2025

OpenGL Tessellation (cont.)

« Advantages

 Send less vertex/index data from CPU to GPU (save
bandwidth)

« More flexible (and smooth) level-of-details (LOD)

Computer Graphics 2025

OpenGL Tessellation (cont.)

« An example result: no tessellation

h &

24

Computer Graphics 2025

OpenGL Tessellation (cont.)

« An example result: with tessellation shader

h &

25

Computer Graphics 2025

Compute Shader

Background

« Traditionally the graphics card (GPU) has been a
rendering co-processor which is handling graphics

* It got more and more common to use graphics cards for
other (not necessarily graphics-related) computational
tasks, called General Purpose Computing on Graphics
Processing Units (GPGPU)

« Higher parallelism
 Faster floating-point calculation

* In OpenGL 4.3, Compute Shaders are introduced for
computing arbitrary information

Advantages of GPGPU

 Before GPGPU (including CUDA, OpenCL, and Compute
Shader), if you want to use GPU for performance
improvement, you need to translate the target problem
into a rendering problem

» For example, to filter an image, you need to
« Draw a quad (two triangles) into a frame buffer object
 Bind the input image as a texture

» Lookup the texture and perform filtering in the fragment
shader

Compute Shader v.s. Other Shaders

« Compute shaders are NOT part of the graphics pipeline

* It uses a function (kernel) to run over a set of the input
data (stream) and output a set of data (stream), without
any assumptions of the data types and format

* You can consider the vertex/fragment shaders as
kernels with fixed data types (vertex/fragment data)

« Each element is processed independently in parallel

* Directly make changes on the GPU memory, similar to a
void function

Computer Graphics 2025

A Simple Compute Shader

layout(local_size x = 16, local size y = 16) in;
layout(rgbasd, binding = @) uniform restrict readonly image2D u input image;
layout(rgbad, binding = 1) uniform restrict writeonly image2D u_output_image;

= 16;
=2 * M+

const float coeffs[N] float[N](...); // generated kernel coefficients

void as1n0) (kernel, executed by each data item)

ivec2 size = imageSize(u_input_image);
ivec2 pixel coord = ivec2{gl GlobalInvocationID.xy);

if (pixel coord.x <« size.x &R pixel coord.y < size.y)

1

vecd sum = vecd(@.8);

for (int 1 = @; 1 < N; ++i)
i
for {int j = @8; j < N; ++3)
1
ivec2 pc = pixel coord + ivec2(i - M, § - M);
if (pc.x < @) pc.x = @;
if (pc.y ¢ @) pc.y = @;

if (pc.x »>= size.x) pc.x = size.x - 1;
if (pc.y »= size.y) pc.y = size.y - 1;
sum += coeffs[i] * coeffs[j] * imageload{u input image, pc);

¥

imagestore(u output image, pixel coord, sum);

Compute Shader v.s. CUDA & OpenCL

» There are more popular GPGPU APIs like NVIDIA CUDA
and OpenCL offer more features as they are aimed at
heavyweight GPGPU projects

* The OpenGL Compute Shader is intentionally designed
to incorporate other OpenGL functionality and uses
GLSL to make it easier to integrate with the existing
OpenGL graphics pipeline/application

« Common applications of Compute Shader

 Physical simulation

» Real-time image processing / texture editing
 Collision detection

* GPU ray tracer

Computer Graphics 2025

Summary
« The input and output of the six different shaders in
OpenGL
Stage Data Element
Vertex Shader per vertex
Tessellation Control Shader per vertex (in a patch)

Tessellation Evaluation Shader per vertex (in a patch)

Geometry Shader per primitive
Fragment Shader per fragment
Compute Shader per (abstract) "work item"

Computer Graphics 2025

	投影片 1
	投影片 2: Recap: OpenGL 1.1 (Fixed Function Pipeline)
	投影片 3: Recap: OpenGL 2.0
	投影片 4: Important Shader Timeline
	投影片 5
	投影片 6: OpenGL 3.2: Geometry Shader
	投影片 7: Geometry Shader
	投影片 8: Geometry Shader (cont.)
	投影片 9: Geometry Shader (cont.)
	投影片 10: Geometry Shader (cont.)
	投影片 11: Geometry Shader (cont.)
	投影片 12: Geometry Shader (cont.)
	投影片 13: Applications: Particle System
	投影片 14
	投影片 15: Background
	投影片 16: Background (cont.)
	投影片 17: Background (cont.)
	投影片 18: Background (cont.)
	投影片 19: Background (cont.)
	投影片 20: OpenGL 4.0: Tessellation
	投影片 21: OpenGL Tessellation (cont.)
	投影片 22: OpenGL Tessellation (cont.)
	投影片 23: OpenGL Tessellation (cont.)
	投影片 24: OpenGL Tessellation (cont.)
	投影片 25: OpenGL Tessellation (cont.)
	投影片 26
	投影片 27: Background
	投影片 28: Advantages of GPGPU
	投影片 29: Compute Shader v.s. Other Shaders
	投影片 30: A Simple Compute Shader
	投影片 31: Compute Shader v.s. CUDA & OpenCL
	投影片 32: Summary
	投影片 33

