

HW1: OBJ Loader

Introduction to Computer Graphics Yu-Ting Wu

HW Description

- Web Link:
 - <u>https://kevincosner.github.io/courses/ICG2022/hw1.html</u>
- Major Task
 - Implement a program to load the geometry data described in a Wavefront Object File (*.obj) and render the model on the screen
- Minor Task
 - Resize the model by normalizing its geometry data
 - Load and delete models dynamically

Grading Policy

- Loading the model correctly (60%) [Test Models]
- Model normalization (10%)
 - Make the center of the model located at the origin (0, 0, 0)
 - Make the maximal extent of the object bound equal to 1
- Dynamic loading and deletion (10%)
 - Control with the keyboard. E.g., press 'o' to load a model from the command line and press 'd' to delete the model
- Code organization (10%)
- Report (5%)
 - Introduce your implementation and put some screenshots
- Bonus (5%)
 - Load with UI, such as a menu or file dialog

Reference Results

Submission

• Deadline: Oct. 16, 2022 (PM 11:59)

Submission rule

• Will be announced later by TA

Late policy

- One day 90%
- Two days 80%
- Three days 70%
- Four days 60%
- Five days+ 50%

Skeleton Code

- Please download the skeleton code from the course website or 數位學苑3.0
- At least add your implementation in the following classes or functions
 - LoadFromFile(...) in trianglemesh.cpp
 - SetupScene() in ICG2022_HW1.cpp
 - *RenderSceneCB()* in *ICG2022_HW1.cpp*
 - *ReleaseResources()* in *ICG2022_HW1.cpp*
 - Update numVertices, numTriangles, objCenter, and objExtent correctly
- Feel free to add other variables or functions if needed

Useful Materials

OBJ Model format

				f	P/T/N	P/T	/N	P/T/N
■ cube.obj·記事本 - □ × 描案匠 編輯匠 格式◎ 檢視◎ 説明 # Unit-volume cube with the same texture coordinates on each face. (g cube usemtl	defaul t						
# # Created by Morgan McGuire and released into the Public Domain on # July 16, 2011.	f -8/- f -8/- f -8/-	4/-6 -7/ 4/-6 -6/ 4/-5 -4/	-3/-6 -2/-6 -3/-5	-6/-2/ -5/-1/ -3/-2/	/ -6 / -6 / -5			
# http://graphics.cs.williams.edu/data comments	f -8/- f -6/- f -6/-	4/-5 -3/ 4/-4 -2/ 4/-4 -1/	-27-5 -37-4 -27-4	- // - 1/ - 1/ - 2/ - 5/ - 1/	/ - 5 / - 4 / - 4			
mtllib default.mtl specify material file	f -5/- f -5/-	4/-3 -1/- 4/-3 -4/-	-3/-3	-4/-2/	/-3 /-3			
$\begin{array}{c} v & -0.5 & 0.5 & -0.5 \\ v & -0.5 & 0.5 & 0.5 \\ v & 0.5 & 0.5 & 0.5 \\ v & 0.5 & 0.5 & -0.5 \\ v & -0.5 & -0.5 \end{array}$	f -7/- f -7/- f -3/- f -3/-	4/-2 -3/ 4/-2 -2/ 4/-1 -4/ 4/-1 -1/	-3/-2 -2/-2 -3/-1 -2/-1	-2/-2/ -6/-1/ -1/-2/ -2/-1/	/ - 2 / - 2 / - 1 / - 1	(adjace	ency,	face data submesh)
v -0.5 -0.5 0.5 v 0.5 -0.5 0.5 v 0.5 -0.5 -0.5 v 0.5 -0.5 -0.5 vertex position declaration	<				ĝ	120列,第7行 1	50% Unix (I	LF) UTF-8
vt 0 1 vt 0 0 vt 1 0 vt 1 1 vertex texture coordinate declaration							7	
vn 0 1 0 vn -1 0 0 vn 1 0 0 vn 0 0 -1							L	
vn 0 0 1 vn 0 -1 0 vertex normal declaration								
<	-							

Useful Materials

Model normalization

- Find the center of a 3D model
- Find the minimal **bounding box** of a 3D model
- Find the maximal extent axis of the bounding box
- Find a mapping to make the model located at the origin and its maximal extent axis equal to 1

Pitfalls

- For the face declaration in an OBJ file
 - The indices of position, normal, and texture coordinate might appear as negative numbers
 - The indices of position, normal, and texture coordinate start with 1
 - A face might be declared as a polygon (>= 3 vertices), you should split them into triangles if needed
 - Some OBJ files downloaded from the Internet might have no normals or texture coordinates
 - But I will avoid using this kind of files

f P/T/N P/T/N P/T/N f **3**-4/-6 -7/-3/-6 -6/-2/-6 f -8/-4/-6 -6/-2/-6 -5/-1/-6 f -8/-4/-5 -4/-3/-5 -3/-2/-5

Other Resources

- Using pop-up menu in FreeGLUT
 - <u>https://www.lighthouse3d.com/tutorials/glut-tutorial/popup-menus/</u>
- Building the Simplest GUI in FreeGLUT
 - GLUI: <u>https://github.com/libglui/glui</u>

Update (2022/10/03)

- It is fine to use your program structure (rather than using the skeleton code); however, you should set the camera to the same configuration as the skeleton code, and describe your program structure in your report
- It is **essential** to subdivide a polygon into triangles if it has more than three vertices

4738/4739/4538 3420/1238/1237 4680/1237/1236 2608/1389/1388 4679/1388/1387 2607/1403/1402 4678/1402/1401

Update (2022/10/03)

 For model normalization, find an equation to map the center of the object to the origin, and the longest axis of the model extent to 1

