
Implementation: Shading

Introduction to Computer Graphics

Yu-Ting Wu

1

Introduction to Computer Graphics 2022



Goals

• Introduce how to define point/directional lights and 
object materials with the Phong lighting model in an 
OpenGL program

• Introduce how to calculate ambient and diffuse lighting 
in the Vertex Shader in the fashion of Gouraud shading
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Recap: Shading
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• Shading refers to the process of altering the color of an 
object/surface/polygon in the 3D scene

• In physically-based rendering, shading tries to 
approximate the local behavior of lights on the object’s 
surface, based on things like

• Surface orientation (normal) N

• Lighting direction vL (and Өi)

• Viewing direction vE (and Өo)

• Material properties

• Participating media

• etc.
vL

vE

N

Өi Өo



Recap: Lambertian Cosine Law
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• Illumination on an oblique surface is less than on a 
normal one

• Generally, illumination falls off as cosӨ

Ө

Ө



Recap: Shaders
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• Shaders: small C-like program that runs in a per-vertex 
(Vertex Shader) or per-fragment (Fragment Shader) 
manner on the GPU in parallel

vertex shader fragment shader

the file extension does not matter!



Recap: Vertex Shader

#version 330 core

layout (location = 0) in vec3 Position;

uniform mat4 modelMatrix;

uniform mat4 viewMatrix;

uniform mat4 projMatrix;

void main() {    

gl_Position = projMatrix * viewMatrix * 

modelMatrix * vec4(Position, 1.0);

}
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uniform variables communicated with the 
CPU
• Get location by glGetUniformLocation
• Set value by glUniformXXX

Vertex attribute
• glEnableVertexAttribArray(0)

the main program executed per vertex

built-in variable for the Clip Space coordinate



Recap: Fragment Shader

#version 330 core

uniform vec3 fillColor;

out vec4 FragColor;

void main() {    

FragColor = vec4(fillColor, 1.0);

}
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uniform variables communicated with the 
CPU
• Get location by glGetUniformLocation
• Set value by glUniformXXX

Output: fragment data

the main program executed per fragment



Recap: Communicate with Shaders
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#version 330 core

layout (location = 0) in vec3 Position;

uniform mat4 MVP;

void main() {    

gl_Position = MVP * vec4(Position, 1.0);

}

CPU

GPU

Vertex Shader1

2



Implementation of Lighting and Shading

• Lighting and shading can be implemented either in the 
vertex shader (compute per vertex and interpolate color) 
or fragment shader (interpolate vertex attributes and 
compute per fragment)

• It can also be implemented in all coordinate spaces, 
such as world space or camera space
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Recap: Gouraud and Phong Shading
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• Gouraud shading: compute lighting at vertices and 
interpolate the lighting color

• Phong shading: interpolate normal and compute lighting

Gouraud
shading

Phong
shading

lighting color is interpolated

artifacts of highlight



Recap: Gouraud and Phong Shading (cont.)
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3D P, N Interpolated 3d P, N

3D P, N

3D P, N



Recap: Vertex Attribute Interpolation
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• Example: interpolate world-space vertex position and 
world-space vertex normal

Vertex Shader Fragment Shader

Tell OpenGL you 
want to 
interpolate these 
attributes



Recap: Vertex Attribute Interpolation (cont.)
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visualize world-space position as color visualize world-space normal as color

(0, 1, 0)
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Overview

• The sample program implements Gouraud shading with 
a point light and a directional light in the Vertex Shader

• Only the diffuse and the ambient term are computed

• Specular term is part of your homework assignment #2
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Data Structure: Lights

• Defined in light.h

• Two types of lights implemented

• Directional light

• Point light
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Recap: Directional Light
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• Describes an emitter that deposits illumination from the 
same direction at every point in space

• Described by

• Light direction (D, xyz)

• Light radiance (L, rgb)

P1

Өi4

P2

P3P4

Өi3 Өi2

Өi1



Data Structure: Directional Light
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Recap: Point Light
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• An isotropic point light source that emits the same 
amount of light in all directions

• Described by 

• Light position (PL, xyz) 

• Light intensity (I, rgb)

P1PL

Өi1

Өi2

P2

P3P4

d1

d2d3
d4



Data Structure: Point Light
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Data Structure: Point Light (cont.)
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Recap: Object Space to World Space
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Object Space

World 
Transformation

World Space

Why? reuse models and save memory

translation

scaling

rotation

translation scaling rotation (Y)



Data Structure: Scene Object
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ambient coefficient
diffuse coefficient
specular coefficient

specular exponent (roughness)



Data Structure: Shaders
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• Defined in shaderprog.h / shaderprog.cpp

• Add class “GouraudShadingDemoShaderProg”

• Add shaders 

• Vertex shader: “gouraud_shading_demo.vs”

• Fragment shader: “gouraud_shading_demo.fs”



Recap: Phong Lighting Model
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• Diffuse reflection

• Light goes everywhere; colored by object color

• Specular reflection

• Happens only near mirror configuration; usually white

• Ambient reflection

• Constant accounted for global illumination (cheap hack)

ambient diffuse specular



Recap: Material Property
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• Highly related to surface types

• The smoother a surface, the more reflected light is 
concentrated in the direction a perfect mirror would 
reflect the light

diffuse glossy specular



Data Structure: Vertex Shader
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#version 330 core

layout (location = 0) in vec3 Position;

layout (location = 1) in vec3 Normal;

// Transformation matrices.

uniform mat4 modelMatrix;

uniform mat4 viewMatrix;

uniform mat4 normalMatrix;

uniform mat4 MVP;



Data Structure: Vertex Shader (cont.)
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// Material properties.

uniform vec3 Ka;

uniform vec3 Kd;

uniform vec3 Ks;

uniform float Ns;

// Light data

uniform vec3 ambientLight;

uniform vec3 dirLightDir;

uniform vec3 dirLightRadiance;

uniform vec3 pointLightPos;

uniform vec3 pointLightIntensity;



Data Structure: Vertex Shader (cont.)
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// Data pass to fragment shader

out vec3 iLightingColor;

void main() {    

gl_Position = MVP * vec4(Position, 1.0);

// Compute vertex lighting in view space.

vec4 tmpPos = viewMatrix * worldMatrix * vec4(Position, 1.0);    

vec3 vsPosition = tmpPos.xyz / tmpPos.w; 

vec3 vsNormal = (normalMatrix * vec4(Normal, 0.0)).xyz; 

vsNormal = normalize(vsNormal);



Data Structure: Vertex Shader (cont.)
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// -------------------------------------------------------------

// Ambient light.

vec3 ambient = Ka * ambientLight;

// -------------------------------------------------------------

// Directional light. 

vec3 vsLightDir = (viewMatrix * vec4(-dirLightDir, 0.0)).xyz;

// Diffuse and Specular.

vec3 diffuse = 

Diffuse(Kd, dirLightRadiance, vsNormal, vsLightDir);

vec3 specular = Specular();

vec3 dirLight = diffuse + specular; 



Data Structure: Vertex Shader (cont.)
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// Point light.

tmpPos = viewMatrix * vec4(pointLightPos, 1.0); 

vec3 vsLightPos = tmpPos.xyz / tmpPos.w;

vsLightDir = normalize(vsLightPos - vsPosition);

float distSurfaceToLight = distance(vsLightPos, vsPosition);

float attenuation = 1.0f / (distSurfaceToLight * distSurfaceToLight); 

vec3 radiance = pointLightIntensity * attenuation;

// Diffuse and Specular.

diffuse = Diffuse(Kd, radiance, vsNormal, vsLightDir);

specular = Specular();

vec3 pointLight = diffuse + specular; 



Data Structure: Vertex Shader (cont.)
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// -------------------------------------------------------------

iLightingColor = ambient + dirLight + pointLight;

}

vec3 Diffuse(vec3 Kd, vec3 I, vec3 N, vec3 lightDir) { 

return Kd * I * max(0, dot(N, lightDir));

}

vec3 Specular( /* Put the parameters here. */ ) {

// Try to implement yourself!

return vec3(0.0, 0.0, 0.0);

}



Data Structure: Shaders (cont.)
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• “GouraudShadingDemoShaderProg.h”

locations of uniform 
matrix variables

locations of uniform 
material variables

locations 
of 
uniform 
light data 
variables



Data Structure: Shaders (cont.)

34

Introduction to Computer Graphics 2022

override from the base class



Data Structure: Shaders (cont.)
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• “GouraudShadingDemoShaderProg.cpp”



Data Structure: Shaders (cont.)
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• “GouraudShadingDemoShaderProg.cpp”



Data Structure: Main Program
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• The flow of the main program remains the same

Initialize window properties and GLEW

Register callback functions



Data Structure: Main Program (cont.)
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• Remember to enable “depth test” by calling

glEnable(GL_DEPTH_TEST);

Otherwise, the Z-buffer will not work



Data Structure: Main Program (cont.)
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Data Structure: Main Program (cont.)
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increase Y rotation every frame

render the object using “GouraudShadingShader”
with object transform, object material, and 

lighting parameters



Data Structure: Main Program (cont.)
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Data Structure: Main Program (cont.)
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render the point light using “FillColorShader”
With point light transform and color



Data Structure: Main Program (cont.)
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interactively control the point light with the keyboard



Results
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Practices

• Implement specular shading (HW2)

• Implement spotlight (HW2)

• Implement Phong shading (HW2)
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Normal Matrix

• To transform a point from Object Space to World Space, 
we multiply its object-space position by the world (model) 
matrix

• How about the vertex normal?

• We also need to transform the object-space normal to 
World Space for lighting computation

• Could we also multiply the object-space normal by the 
world matrix?
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Normal Matrix (cont.)

• If the scaling in a world matrix is uniform, you can use 
the world matrix for transforming the normal directly

• However, if there is a non-uniform scaling, the matrix for 
transforming normal should be different
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normal should be 
perpendicular to 
the surface!N

N’



Normal Matrix (cont.)

• Derivation of the normal matrix
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N = (nx, ny, nz)

Tangent = (tx, ty, tz)

transform normal

transform vertex



Normal Matrix (cont.)

• Derivation of the normal matrix
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N = (nx, ny, nz)

Tangent = (tx, ty, tz)

normal matrix
(the inverse transpose of world matrix)

Note: if you want to 
compute lighting 
in Camera Space, 

the M should be the 
modelview matrix



Recap: Ambient Shading

• Add constant color to account for disregarded illumination 
and fill black shadows

51

Introduction to Computer Graphics 2022

reflected ambient light

ambient coefficient

the intensity of ambient light



Recap: Diffuse Shading

• Applies to diffuse or matte surface
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diffusely reflected light

diffuse coefficient

illumination from source

Lambertian law

vL N



Recap: Local Light Attenuation
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• The length of the side of a 
receiver patch is 
proportional to its distance 
from the light

• As a result, the average
energy per unit area is 
proportional to the square 
of the distance from the 
light  


