
Implementation: Shading

Introduction to Computer Graphics

Yu-Ting Wu

1

Introduction to Computer Graphics 2022

Goals

• Introduce how to define point/directional lights and
object materials with the Phong lighting model in an
OpenGL program

• Introduce how to calculate ambient and diffuse lighting
in the Vertex Shader in the fashion of Gouraud shading

2

Introduction to Computer Graphics 2022

Recap: Shading

3

Introduction to Computer Graphics 2022

• Shading refers to the process of altering the color of an
object/surface/polygon in the 3D scene

• In physically-based rendering, shading tries to
approximate the local behavior of lights on the object’s
surface, based on things like

• Surface orientation (normal) N

• Lighting direction vL (and Өi)

• Viewing direction vE (and Өo)

• Material properties

• Participating media

• etc.
vL

vE

N

Өi Өo

Recap: Lambertian Cosine Law

4

Introduction to Computer Graphics 2022

• Illumination on an oblique surface is less than on a
normal one

• Generally, illumination falls off as cosӨ

Ө

Ө

Recap: Shaders

5

Introduction to Computer Graphics 2022

• Shaders: small C-like program that runs in a per-vertex
(Vertex Shader) or per-fragment (Fragment Shader)
manner on the GPU in parallel

vertex shader fragment shader

the file extension does not matter!

Recap: Vertex Shader

#version 330 core

layout (location = 0) in vec3 Position;

uniform mat4 modelMatrix;

uniform mat4 viewMatrix;

uniform mat4 projMatrix;

void main() {

gl_Position = projMatrix * viewMatrix *

modelMatrix * vec4(Position, 1.0);

}

6

Introduction to Computer Graphics 2022

uniform variables communicated with the
CPU
• Get location by glGetUniformLocation
• Set value by glUniformXXX

Vertex attribute
• glEnableVertexAttribArray(0)

the main program executed per vertex

built-in variable for the Clip Space coordinate

Recap: Fragment Shader

#version 330 core

uniform vec3 fillColor;

out vec4 FragColor;

void main() {

FragColor = vec4(fillColor, 1.0);

}

7

Introduction to Computer Graphics 2022

uniform variables communicated with the
CPU
• Get location by glGetUniformLocation
• Set value by glUniformXXX

Output: fragment data

the main program executed per fragment

Recap: Communicate with Shaders

8

Introduction to Computer Graphics 2022

#version 330 core

layout (location = 0) in vec3 Position;

uniform mat4 MVP;

void main() {

gl_Position = MVP * vec4(Position, 1.0);

}

CPU

GPU

Vertex Shader1

2

Implementation of Lighting and Shading

• Lighting and shading can be implemented either in the
vertex shader (compute per vertex and interpolate color)
or fragment shader (interpolate vertex attributes and
compute per fragment)

• It can also be implemented in all coordinate spaces,
such as world space or camera space

9

Introduction to Computer Graphics 2022

Recap: Gouraud and Phong Shading

10

Introduction to Computer Graphics 2022

• Gouraud shading: compute lighting at vertices and
interpolate the lighting color

• Phong shading: interpolate normal and compute lighting

Gouraud
shading

Phong
shading

lighting color is interpolated

artifacts of highlight

Recap: Gouraud and Phong Shading (cont.)

11

Introduction to Computer Graphics 2022

3D P, N Interpolated 3d P, N

3D P, N

3D P, N

Recap: Vertex Attribute Interpolation

12

Introduction to Computer Graphics 2022

• Example: interpolate world-space vertex position and
world-space vertex normal

Vertex Shader Fragment Shader

Tell OpenGL you
want to
interpolate these
attributes

Recap: Vertex Attribute Interpolation (cont.)

13

Introduction to Computer Graphics 2022

visualize world-space position as color visualize world-space normal as color

(0, 1, 0)

14

Programs

Introduction to Computer Graphics 2022

Overview

• The sample program implements Gouraud shading with
a point light and a directional light in the Vertex Shader

• Only the diffuse and the ambient term are computed

• Specular term is part of your homework assignment #2

15

Introduction to Computer Graphics 2022

Data Structure: Lights

• Defined in light.h

• Two types of lights implemented

• Directional light

• Point light

16

Introduction to Computer Graphics 2022

Recap: Directional Light

17

Introduction to Computer Graphics 2022

• Describes an emitter that deposits illumination from the
same direction at every point in space

• Described by

• Light direction (D, xyz)

• Light radiance (L, rgb)

P1

Өi4

P2

P3P4

Өi3 Өi2

Өi1

Data Structure: Directional Light

18

Introduction to Computer Graphics 2022

Recap: Point Light

19

Introduction to Computer Graphics 2022

• An isotropic point light source that emits the same
amount of light in all directions

• Described by

• Light position (PL, xyz)

• Light intensity (I, rgb)

P1PL

Өi1

Өi2

P2

P3P4

d1

d2d3
d4

Data Structure: Point Light

20

Introduction to Computer Graphics 2022

Data Structure: Point Light (cont.)

21

Introduction to Computer Graphics 2022

Recap: Object Space to World Space

22

Introduction to Computer Graphics 2022

Object Space

World
Transformation

World Space

Why? reuse models and save memory

translation

scaling

rotation

translation scaling rotation (Y)

Data Structure: Scene Object

23

Introduction to Computer Graphics 2022

ambient coefficient
diffuse coefficient
specular coefficient

specular exponent (roughness)

Data Structure: Shaders

24

Introduction to Computer Graphics 2022

• Defined in shaderprog.h / shaderprog.cpp

• Add class “GouraudShadingDemoShaderProg”

• Add shaders

• Vertex shader: “gouraud_shading_demo.vs”

• Fragment shader: “gouraud_shading_demo.fs”

Recap: Phong Lighting Model

25

Introduction to Computer Graphics 2022

• Diffuse reflection

• Light goes everywhere; colored by object color

• Specular reflection

• Happens only near mirror configuration; usually white

• Ambient reflection

• Constant accounted for global illumination (cheap hack)

ambient diffuse specular

Recap: Material Property

26

Introduction to Computer Graphics 2022

• Highly related to surface types

• The smoother a surface, the more reflected light is
concentrated in the direction a perfect mirror would
reflect the light

diffuse glossy specular

Data Structure: Vertex Shader

27

Introduction to Computer Graphics 2022

#version 330 core

layout (location = 0) in vec3 Position;

layout (location = 1) in vec3 Normal;

// Transformation matrices.

uniform mat4 modelMatrix;

uniform mat4 viewMatrix;

uniform mat4 normalMatrix;

uniform mat4 MVP;

Data Structure: Vertex Shader (cont.)

28

Introduction to Computer Graphics 2022

// Material properties.

uniform vec3 Ka;

uniform vec3 Kd;

uniform vec3 Ks;

uniform float Ns;

// Light data

uniform vec3 ambientLight;

uniform vec3 dirLightDir;

uniform vec3 dirLightRadiance;

uniform vec3 pointLightPos;

uniform vec3 pointLightIntensity;

Data Structure: Vertex Shader (cont.)

29

Introduction to Computer Graphics 2022

// Data pass to fragment shader

out vec3 iLightingColor;

void main() {

gl_Position = MVP * vec4(Position, 1.0);

// Compute vertex lighting in view space.

vec4 tmpPos = viewMatrix * worldMatrix * vec4(Position, 1.0);

vec3 vsPosition = tmpPos.xyz / tmpPos.w;

vec3 vsNormal = (normalMatrix * vec4(Normal, 0.0)).xyz;

vsNormal = normalize(vsNormal);

Data Structure: Vertex Shader (cont.)

30

Introduction to Computer Graphics 2022

// ---

// Ambient light.

vec3 ambient = Ka * ambientLight;

// ---

// Directional light.

vec3 vsLightDir = (viewMatrix * vec4(-dirLightDir, 0.0)).xyz;

// Diffuse and Specular.

vec3 diffuse =

Diffuse(Kd, dirLightRadiance, vsNormal, vsLightDir);

vec3 specular = Specular();

vec3 dirLight = diffuse + specular;

Data Structure: Vertex Shader (cont.)

31

Introduction to Computer Graphics 2022

// Point light.

tmpPos = viewMatrix * vec4(pointLightPos, 1.0);

vec3 vsLightPos = tmpPos.xyz / tmpPos.w;

vsLightDir = normalize(vsLightPos - vsPosition);

float distSurfaceToLight = distance(vsLightPos, vsPosition);

float attenuation = 1.0f / (distSurfaceToLight * distSurfaceToLight);

vec3 radiance = pointLightIntensity * attenuation;

// Diffuse and Specular.

diffuse = Diffuse(Kd, radiance, vsNormal, vsLightDir);

specular = Specular();

vec3 pointLight = diffuse + specular;

Data Structure: Vertex Shader (cont.)

32

Introduction to Computer Graphics 2022

// ---

iLightingColor = ambient + dirLight + pointLight;

}

vec3 Diffuse(vec3 Kd, vec3 I, vec3 N, vec3 lightDir) {

return Kd * I * max(0, dot(N, lightDir));

}

vec3 Specular(/* Put the parameters here. */) {

// Try to implement yourself!

return vec3(0.0, 0.0, 0.0);

}

Data Structure: Shaders (cont.)

33

Introduction to Computer Graphics 2022

• “GouraudShadingDemoShaderProg.h”

locations of uniform
matrix variables

locations of uniform
material variables

locations
of
uniform
light data
variables

Data Structure: Shaders (cont.)

34

Introduction to Computer Graphics 2022

override from the base class

Data Structure: Shaders (cont.)

35

Introduction to Computer Graphics 2022

• “GouraudShadingDemoShaderProg.cpp”

Data Structure: Shaders (cont.)

36

Introduction to Computer Graphics 2022

• “GouraudShadingDemoShaderProg.cpp”

Data Structure: Main Program

37

Introduction to Computer Graphics 2022

• The flow of the main program remains the same

Initialize window properties and GLEW

Register callback functions

Data Structure: Main Program (cont.)

38

Introduction to Computer Graphics 2022

• Remember to enable “depth test” by calling

glEnable(GL_DEPTH_TEST);

Otherwise, the Z-buffer will not work

Data Structure: Main Program (cont.)

39

Introduction to Computer Graphics 2022

Data Structure: Main Program (cont.)

40

Introduction to Computer Graphics 2022

increase Y rotation every frame

render the object using “GouraudShadingShader”
with object transform, object material, and

lighting parameters

Data Structure: Main Program (cont.)

41

Introduction to Computer Graphics 2022

Data Structure: Main Program (cont.)

42

Introduction to Computer Graphics 2022

render the point light using “FillColorShader”
With point light transform and color

Data Structure: Main Program (cont.)

43

Introduction to Computer Graphics 2022

interactively control the point light with the keyboard

Results

44

Introduction to Computer Graphics 2022

Practices

• Implement specular shading (HW2)

• Implement spotlight (HW2)

• Implement Phong shading (HW2)

45

Introduction to Computer Graphics 2022

46

Any Questions?

Introduction to Computer Graphics 2022

Normal Matrix

• To transform a point from Object Space to World Space,
we multiply its object-space position by the world (model)
matrix

• How about the vertex normal?

• We also need to transform the object-space normal to
World Space for lighting computation

• Could we also multiply the object-space normal by the
world matrix?

47

Introduction to Computer Graphics 2022

Normal Matrix (cont.)

• If the scaling in a world matrix is uniform, you can use
the world matrix for transforming the normal directly

• However, if there is a non-uniform scaling, the matrix for
transforming normal should be different

48

Introduction to Computer Graphics 2022

normal should be
perpendicular to
the surface!N

N’

Normal Matrix (cont.)

• Derivation of the normal matrix

49

Introduction to Computer Graphics 2022

N = (nx, ny, nz)

Tangent = (tx, ty, tz)

transform normal

transform vertex

Normal Matrix (cont.)

• Derivation of the normal matrix

50

Introduction to Computer Graphics 2022

N = (nx, ny, nz)

Tangent = (tx, ty, tz)

normal matrix
(the inverse transpose of world matrix)

Note: if you want to
compute lighting
in Camera Space,

the M should be the
modelview matrix

Recap: Ambient Shading

• Add constant color to account for disregarded illumination
and fill black shadows

51

Introduction to Computer Graphics 2022

reflected ambient light

ambient coefficient

the intensity of ambient light

Recap: Diffuse Shading

• Applies to diffuse or matte surface

52

Introduction to Computer Graphics 2022

diffusely reflected light

diffuse coefficient

illumination from source

Lambertian law

vL N

Recap: Local Light Attenuation

53

Introduction to Computer Graphics 2022

• The length of the side of a
receiver patch is
proportional to its distance
from the light

• As a result, the average
energy per unit area is
proportional to the square
of the distance from the
light

