Image and Color

Introduction to Computer Graphics
Yu-Ting Wu
Recap.

• In computer graphics, we generate an image from a virtual 3D world
 • We are going to introduce the representation of an image
Image
Image Display

- Monitor display pictures as a **rectangular array of pixels** (small, usually square, dots of color)
 - Merge optically when viewed at a suitable distance to produce the impression of continuous tones
Image Display (cont.)

- Monitor display pictures as a **rectangular array of pixels** (small, usually square, dots of color)
 - Merge optically when viewed at a suitable distance to produce the impression of continuous tones

Programs set the **shade of grey or color** (rendering)

- store with a specific format

reconstruct pixel data from the format
Two Approaches for Graphical Modeling

bitmapted images vector graphics
Bitmapped Images

• An image is modeled by an array of pixel values
• Distinction between
 • **Logical pixels**
 • Stored value in an image file
 • **Physical pixels**
 • Physical dots on a display screen

Image resolution (logical pixels)

Physical pixels 1200 x 800
Bitmapped Images Examples
Vector Graphics

• An image is modelled by the mathematical description of a collection of individual objects making up the image
 • Lines
 • End points
 • Curves
 • Control points
 • Shapes
 • Shape-dependent parameters
An Simple Vector Graphics Example

```
128

0.5 1.5 0.5 setrgbcolor
0 0 128 128 rectfill
0 0 0 setrgbcolor
32 32 64 64 rectfill
```
Vector Graphics Examples
Bitmapped v.s. Vector Graphics

- Bitmapped images provide **better control of pixel values**, thus being more suitable for natural images.
- Vector graphics are **resolution independent**, thus being more suitable for texts and icons.
3D Graphics

- A **combination** of vector and bitmapped graphics
- Shapes are defined in the virtual 3D space and projected (rasterized) to the 2D image plane
Image Coordinate

- The coordinate of a 2D image depends on libraries
Rendering of Math

• When it becomes necessary to render a vector drawing, the **stored values** (e.g., endpoints of a line) are used in conjunction with the **general form** of the description of each class of object
 - Can be considered as **sampling**

• Example: \(y = \frac{5x}{2} + 1 \)
 - pass through (0, 1), (1, 4), (2, 6), (3, 9) ...

• Jaggedness is inevitable!
 - Due to the use of a grid of discrete pixels
Anti-aliasing

• Anti-aliasing is a **practical** technique to reduce the jaggies

• Use intermediate grey values
 - In the frequency domain, it relates to reducing the frequency of the signal

• Coloring each pixel in a shade of grey whose **brightness is proportional to the area** of the intersection between the pixels and a “**one-pixel-wide**” line
Anti-aliasing (cont.)

Aliased

Anti-Aliased
Color
Color Science

• Color is a common experience for humans, but being a rather complex phenomenon

• Color science is a topic that attempts to relate the subjective sensation of color to measurable and reproducible physical phenomena
Spectral Power Distribution

- Light is an electromagnetic wave, and we can measure its wavelength and intensity
- **Spectral power distribution (SPD)** is a description of how the intensity of light varies with its wavelength

![Graph showing spectral power distribution](image)

- Human visible range: 370 nm – 730 nm
- SPD of daylight
Spectral Power Distribution (cont.)

Increasing Frequency

Increasing Wavelength

Human Visible Spectrum

Relative Sensitivity

Wavelength (nm)

Human Luminance Sensitivity Function
Color

- Reflected color is the result of interaction of light source spectrum with surface reflectance.
Tristimulus Theory

• SPDs are too cumbersome for representing the color in computer graphics

• Need a more compact, efficient, and accurate way to represent color signals
 • Find proper basis functions to map the infinite-dimensional space of all possible SPDs to the low-dimensional space of coefficients

• We use the tristimulus theory
 • All visible SPDs can be accurately represented with three values
 = Any color can be specified by just three values, giving the weights of each of the three components
Human Eye
Rods and Cones

- Two types of cells on the retina: rods and cones
 - **Rods**: responsible for **intensity** (125M)
 - **Cones**: responsible for **color** (6M~7M)
Three Types of Cone Cells

- L-cones: 564 nm (Long)
- M-cones: 534 nm (Medium)
- S-cones: 420 nm (Short)
Color Perception

- Rods and cones act as filters on the spectrum
 - To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
 - Each cone yields one number and we just got three numbers in total!
RGB Color Model

- The **tristimulus theory** and the **response curves of LMS cones** lead to the RGB model
 - Any color can be represented by three values, giving the proportions of red (R), green (G), and blue (B) light
 - However, no standard SPDs are defined for R, G, and B
RGB Color Gamut

• Although the RGB model provides a good representation of color, it cannot represent all visible colors of the human eye

• RGB primaries do produce the **largest** gamut from the simple addition of three primaries

• Red, green, and blue are called the **primary color** of the light (additive mixing)
RGB Color Model Representation

- We can write a color with the RGB model in the form of
 \[(r, g, b),\]
 Where \(r, g, b\) are the **amounts (proportion of the pure light)** of red, green, and blue light making up the color.

<table>
<thead>
<tr>
<th>Color</th>
<th>RGB Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>(100%, 0%, 0%)</td>
</tr>
<tr>
<td>Green</td>
<td>(0%, 100%, 0%)</td>
</tr>
<tr>
<td>Blue</td>
<td>(0%, 0%, 100%)</td>
</tr>
<tr>
<td>Black</td>
<td>(0%, 0%, 0%)</td>
</tr>
<tr>
<td>White</td>
<td>(100%, 100%, 100%)</td>
</tr>
<tr>
<td>Gray</td>
<td>(50%, 50%, 50%)</td>
</tr>
<tr>
<td>Cyan</td>
<td>(0%, 100%, 100%)</td>
</tr>
<tr>
<td>Magenta</td>
<td>(100%, 0%, 100%)</td>
</tr>
<tr>
<td>Yellow</td>
<td>(100%, 100%, 0%)</td>
</tr>
</tbody>
</table>
Color Depth

• In digital representation, we must choose the **number of bits** used for a color

• The most common choice is **8 bits (1 byte)** for each primary color, making 24 bits (3 bytes) in total
 - The range of value falls within [0, 255], making a total $256 \times 256 \times 256 = 16777216$ different colors (**24 bit color depth**)

<table>
<thead>
<tr>
<th>Color</th>
<th>RGB Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>(255, 0, 0)</td>
</tr>
<tr>
<td>Green</td>
<td>(0, 255, 0)</td>
</tr>
<tr>
<td>Blue</td>
<td>(0, 0, 255)</td>
</tr>
<tr>
<td>Black</td>
<td>(0, 0, 0)</td>
</tr>
<tr>
<td>White</td>
<td>(255, 255, 255)</td>
</tr>
<tr>
<td>Gray</td>
<td>(127, 127, 127)</td>
</tr>
<tr>
<td>Cyan</td>
<td>(0, 255, 255)</td>
</tr>
<tr>
<td>Magenta</td>
<td>(255, 0, 255)</td>
</tr>
<tr>
<td>Yellow</td>
<td>(255, 255, 0)</td>
</tr>
</tbody>
</table>
Color Representation

• In **interactive** computer graphics, we usually normalize the range of color to \([0.0, 1.0]\)

<table>
<thead>
<tr>
<th>Color</th>
<th>RGB Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>((1, 0, 0))</td>
</tr>
<tr>
<td>Green</td>
<td>((0, 1, 0))</td>
</tr>
<tr>
<td>Blue</td>
<td>((0, 0, 1))</td>
</tr>
<tr>
<td>Black</td>
<td>((0, 0, 0))</td>
</tr>
<tr>
<td>White</td>
<td>((1, 1, 1))</td>
</tr>
<tr>
<td>Gray</td>
<td>((0.5, 0.5, 0.5))</td>
</tr>
<tr>
<td>Cyan</td>
<td>((0, 1, 1))</td>
</tr>
<tr>
<td>Magenta</td>
<td>((1, 0, 1))</td>
</tr>
<tr>
<td>Yellow</td>
<td>((1, 1, 0))</td>
</tr>
</tbody>
</table>
The Rendered Images (Gray Scale)
The Rendered Images (Color)
Any Questions?