

Lighting and Shading

Introduction to Computer Graphics Yu-Ting Wu

Recap.

- From week 2 to week 4, we introduced how a 3D shape shows up on the screen
- In the last week, we had a quick glance at the GPU graphics pipeline
- Next, we will talk about how to determine the fragment color
 - Lighting and shading
 - Texture mapping
 - Alpha blending for transparency objects

Shading: Materials and Lighting

Shading: Materials and Lighting (cont.)

Shading

- Shading refers to the process of altering the color of an object/surface/polygon in the 3D scene
- In physically-based rendering, shading tries to approximate the local behavior of lights on the object's surface, based on things like
 - Surface orientation (normal) N
 - Lighting direction vL (and Θ_i)
 - Viewing direction vE (and Θ_o)
 - Material properties
 - Participating media
 - etc.

Lambertian Cosine Law

- Illumination on an oblique surface is less than on a normal one
- Generally, illumination falls off as cosθ

$$E = \frac{\Phi}{A'} = \frac{\Phi\cos\theta}{A}$$

Lights

Lights in Computer Graphics

- Point light –
- Spot light
 Area light
- Directional light
 Environment light

Local Light

- The distance between a light and a surface is **not** long enough compared to the scene scale
- The position of light needs to be considered during shading

N₁

- Lighting direction $vL = |P_L P|$
- Lighting attenuation is proportional to the square of the distance between the light and the point

 N_2

Point Light

- An isotropic point light source that emits the same amount of light in all directions
- Described by
 - Light position (P_L , xyz)
 - Light intensity (I, rgb)

Point Light (cont.)

A scene illuminated by a point light

Spot Light

- A handy variation on point lights
- Rather than shining illumination in all directions, it emits light in a cone of directions from its position
- Described by
 - Light position (**P**₁, xyz)
 - Light intensity (*I*, rgb)
 - Light direction (**D**, xyz)
 - TotalWidth
 - FalloffStart

P₁

Spot Light (cont.)

A scene illuminated by a spot light

Area Light

- Defined by one or more shapes that emit light from their surface, with some directional distribution of energy at each point on the surface
- Require integration of lighting contribution across the light surface
 - In offline rendering, usually estimated by sampling
 - Expensive for real-time rendering
 - Heitz et al., SIGGRAPH 2016
 - Dupuy et al., SIGGRAPH 2017

14

P₁

Area Light (cont.)

A scene illuminated by an area light

Distant Light

- The distance between a light and a surface is long enough compared to the scene scale and can be ignored
 - Lighting direction is fixed
 - No lighting attenuation
- Directional light (sun) is the most common distant light

Directional Light

 Describes an emitter that deposits illumination from the same direction at every point in space

 θ_{i4}

 P_4

- Described by
 - Light direction (**D**, xyz)
 - Light radiance (L, rgb)

 P_1

Ρ,

θ_{i1}

θ_{i2}

θ_{i3}/

 P_3

Environment Light

- Use a texture (cube map or longitude-latitude image) to represent a spherical energy distribution
 - Each texel maps to a spherical direction, considered as a directional light
 - The whole map illuminates the scene from a virtual sphere at an infinite distance
- Also called image-based lighting (IBL)

Environment Light (cont.)

• Widely used in digital visual effects and film production

Environment Light (cont.)

Local, Direct, and Global Illumination

- Direct illumination considers only the direct contribution of lights
- Local illumination can be considered as direct lighting without occlusion (all lights are fully visible, no shadows)
- Global illumination includes multi-bounce illumination reflected from other surfaces (need recursive computation!)

Local, Direct, and Global Illumination (cont.)

Direct Lighting Only

Direct + Indirect Lighting

Comparison of direct and global illumination

Materials

Materials

Materials (cont.)

- Highly related to surface types
- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflect the light

Materials (cont.)

- Highly related to surface types
- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflect the light

Phong Lighting Model

- Diffuse reflection
 - Light goes everywhere; colored by object color
- Specular reflection
 - Happens only near mirror configuration; usually white
- Ambient reflection
 - Constant accounted for global illumination (cheap hack)

ambient

Ambient Shading

 Add constant color to account for disregarded illumination and fill black shadows

Ambient Shading (cont.)

 Add constant color to account for disregarded illumination and fill black shadows

the intensity of ambient light $L_a = k_a \cdot I_a$ ambient coefficient

reflected ambient light

Diffuse Shading

- Assume light reflects equally in all directions
 - The surface is rough with lots of tiny microfacets
- Therefore, the surface looks the same color from all views (view independent)

- Assume light reflects equally in all directions
 - The surface is rough with lots of tiny microfacets
- Therefore, the surface looks the same color from all views (view independent)

• Applies to diffuse or matte surface

diffuse-reflection model with different $k_{ m d}$

ambient and diffuse-reflection model with different k_a

 $I_a = 1.0$ $k_d = 0.4$

- For color objects, apply the formula for each color channel separately
- Light can also be non-white

Example: white light: (0.9, 0.9, 0.9) yellow light: (0.8, 0.8, 0.2)

$$L_d = k_d \cdot I \cdot \max(0, N \cdot vL)$$

Example: green ball: (0.2, 0.7, 0.2) blue ball: (0.2, 0.2, 0.7)

Specular Shading

- Some surfaces have highlights, mirror-like reflection
- View direction dependent
- Especially obvious for smooth shiny surfaces

Specular Shading (cont.)

Phong specular model [1975]

$$vR = vL + 2((N \cdot vL)N - vL)$$

$$= 2(N \cdot vL)N - vL$$

perfectly reflected direction

(you can find the proof <u>here</u>)

Specular Shading (cont.)

- Phong specular model [1975]
 - Fall off gradually from the perfect reflection direction

Phong specular Variant: Blinn-Phong

- Rather than computing reflection directly, just compare to normal bisection property
- One can prove $\cos^n(\sigma) = \cos^{4n}(\alpha)$

$$vH = bisector(vL, vE)$$

= $\frac{(vL + vE)}{\|vL + vE\|}$

 $L_s = k_s \cdot I \cdot \max(0, \cos\sigma)^n$ $= k_s \cdot I \cdot \max(0, N \cdot vH)^n$

Specular Shading (cont.)

• Increase n narrows the lobe

Specular Shading (cont.)

n = 3.0 n = 5.0 n = 10.0 n = 27.0 n = 200.0

Complete Phong Lighting Model

• Compute the contribution from a light to a point by including **ambient**, **diffuse**, and **specular** components

 $L = L_a + L_d + L_s$ = $k_a \cdot I_a + I(k_d \cdot \max(0, N \cdot vL) + k_s \cdot \max(0, N \cdot vH)^n)$

• If there are **s** lights, just sum over all the lights because the lighting is linear

$$L = k_a \cdot I_a + \sum_i (I_i (k_d \cdot \max(0, N \cdot vL_i) + k_s \cdot \max(0, N \cdot vH_i)^n))$$

Some Results with Phong Lighting Model

Material File Format

Material Template Library

 A material template library (*.mtl) file defines the materials of a *.obj model
 g cube usemt1 default

■ cube.obj:記事本 檔案(D) 編輯(D) 核執(D) 說明 # Unit-volume cube with the same texture # # Created by Morgan McGuire and released # July 16, 2011. # # http://graphics.cs.williams.edu/data	
mtllib default.mtl	specify material file
v -0.5 0.5 -0.5 v -0.5 0.5 0.5 v 0.5 0.5 0.5 v 0.5 0.5 -0.5 v -0.5 -0.5 -0.5 v -0.5 -0.5 0.5 v 0.5 -0.5 0.5 v 0.5 -0.5 0.5 v 0.5 -0.5 -0.5 v 0.5 -0.5 -0.5 v 1 0 vt 1 0 vt 1 1	
vn 0 1 0 vn -1 0 0 vn 1 0 0 vn 0 0 -1 vn 0 0 1 vn 0 -1 0	v

ube mtl default	
6/-4/-4 -2/-3/-4 -1/-2/-4 6/-4/-4 -1/-2/-4 -5/-1/-4 5/-4/-3 -1/-3/-3 -4/-2/-3 5/-4/-3 -4/-2/-3 -8/-1/-3 7/-4/-2 -3/-3/-2 -2/-2/-2 7/-4/-2 -2/-2/-2 -6/-1/-2 3/-4/-1 -4/-3/-1 -1/-2/-1	declare a new group (submesh) called "cube" that use "default" material
	these faces are in the "cube" group and use the "default" material

Material Template Library (cont.)

- A model can have multiple groups (sub-meshes)
- The faces in the same group have the same material properties

🦲 Rose.obj - 記事本	🧻 Rose.obj - 記事本	🦳 Rose.obj - 記事本
檔案(E) 編輯(E) 格式(<u>O</u>) 檢視(⊻) 說明	檔案(E) 編輯(E) 格式(Q) 檢視(⊻) 說明	檔案(E) 編輯(E) 格式(Q) 檢視(⊻) 說明
vn 0.0164 -0.9999 0.0000	vn 0.7047 0.0907 0.7036	usemtl phong2
usemtl phongEl	vn 0.5859 0.0935 0.8050	f 81179/95085/81578 81529/95086/
f 1/1/1 29/2/2 32/3/3 2/4/4	vn 0.4528 0.0964 0.8864	f 81529/95086/81579 81180/95089/
f 2/4/4 32/3/3 33/5/5 3/6/6	usemtl phongl	f 81703/95087/81580 81530/95090/
f 3/6/6 33/5/5 34/7/7 4/8/8	f 79857/93559/80376 80519/935	f 81532/95088/81581 81703/95087/
f 4/8/8 34/7/7 3344/9/9 3345/ f 29/2/2 30/11/11 35/12/12 32	f 80519/93560/80377 79858/935	f 81180/95089/81582 81533/95094/
1 29/2/2 30/11/11 33/12/12 32	f 80839/93561/80378 80520/935	f 81533/95094/81587 81181/95096/
第 253798 列 [,] 第 34 行 100% Unix (L	第 337781 列 [,] 第 24 行 100% Unix (L	第 341462 列 [,] 第 1 行 100% Unix (LF)

Material Template Library (cont.)

- The material template library (*.mtl) used by a Wavefront OBJ (*.obj) file describes material properties using
 - Phong lighting model (Ka, Kd, Ks, Ns)
 - Texture maps (mapKa, mapKd, mapKs, mapNs ...)
 - Transparency (d, Tr, Ni)
 - ... etc
- You can refer to the wiki page for more information https://en.wikipedia.org/wiki/Wavefront_.obj_file

Material Template Library (cont.)

Rose.mtl

)
🧾 Rose.obj - 記事本		//// Rose.mtl - 記事本
檔案(E) 編輯(E) 格式(Q) 檢視(V) 說明 vn 0.7047 0.0907 0.7036 vn 0.5859 0.0935 0.8050 vn 0.4528 0.0964 0.8864 vgemt1 phong1		檔案(E) 編輯(E) 格式(Q) 檢視(⊻) 說明 # Blender MTL File: 'None' # Material Count: 3
usemtl phongl f 79857/93559/80376 80519/935 f 80519/93560/80377 79858/935 f 80839/93561/80378 80520/935 < 第 337781 列,第 24 行 100% Unix (L	Rose.obj - 記事本 檔案(E) 編輯(E) 格式(Q) 檢視(⊻) 說明 usemt1 phong2 f 81179/95085/81578 81529/95086/ f 81529/95086/81579 81180/95089/ f 81703/95087/81580 81530/95090/ f 81532/95088/81581 81703/95087/ f 81532/95088/81581 81703/95087/ f 81533/95094/81582 81533/95094/ f 81533/95094/81587 81181/95096/	newmtl phongl Ns 179.999996 Ka 0.500000 0.500000 0.500000 Kd 0.420000 0.620000 0.058000 Ks 0.500000 0.500000 0.500000
── Rose.obj - 記事本 檔案(E) 編輯(E) 格式(○) 檢視(⊻) 說明 vn 0.0164 -0.9999 0.0000 vgent1 phon gT1		Newmtl phong2 Ns 18.000005 Ka 0.149351 0.149351 0.149351 Kd 0.478000 0.651000 0.318000 Ks 0.500000 0.500000 0.500000
usemt1 phongE1 f 1/1/1 29/2/2 32/3/3 2/4/4 f 2/4/4 32/3/3 33/5/5 3/6/6 f 3/6/6 33/5/5 34/7/7 4/8/8 f 4/8/8 34/7/7 3344/9/9 3345/ f 29/2/2 30/11/11 35/12/12 32		→newmtl phongEl Ns 179.999996 Ka 0.500000 0.500000 0.500000 Kd 0.700000 0.240000 0.240000 Ks 0.300000 0.300000 0.300000
第 253798 列 [,] 第 34 行 100% Unix (L	Rose.obj	< 第1列 [,] 第1行 100% Unix (LF)

Any Questions?