

3D Computer Graphics

Multimedia Techniques & Applications Yu-Ting Wu

(with slides borrowed from Prof. Yung-Yu Chuang, Prof. Tzu-Mao Li, and Dr. I-Chao Shen)

What is Computer Graphics

- Computer graphics are pictures and films created using computers
- Computer graphics is the process of creation, storage and manipulation of models and images using data structure and algorithms

From 2D Graphics to 3D Graphics

• We have talked about 2D vector graphics, now we will extend it to the **3D** world

What Happened in Previous 20 Years

Resident Evil 3 (1999)

Resident Evil 3 Remake (2020)

Which Cat is Real? (Goose or Reggie)

Why Computer Graphics is Important

• Graphics push advances in many fields

Applications of Computer Graphics

• Lighting and architecture design

• Visualization of scientific data and physical simulation

• Games, AR, MR, and VR

• Film production

• Training data generation for deep learning

Description of a 3D World

- Define geometry of the objects (or scene)
 - Represented by a set of 3D coordinates (vertices) and their adacencies

Description of a 3D World (cont.)

- Add materials of the objects (or scene)
 - Usually represented by math
- Add lights

simulate lighting

Description of a 3D World (cont.)

 Simulate more realistic materials and consider more light paths

Description of a 3D World (cont.)

• Simulate more light paths

Generate Images from the 3D World

- Most displays are 2D, so we need to generate images from the 3D world
- Just like taking a picture with a camera in our daily lives
 - But with a virtual camera and a virtual film

3D virtual world

rendered image

Generate Images from the 3D World (cont.)

Are These 3D?

Are These 3D? (cont.)

• 3D is much more difficult than 2D!

Are These 3D? (cont.)

• 3D is much more difficult than 2D!

The Differences between Relevant Fields

 Traditionally we will categorize computer graphics, computer vision, and image processing by their inputs and outputs: outputs

descriptionsimagesdescriptionscomputer graphicsimagescomputer visionImage processing

However, the gaps are much vaguer now!

inputs

Major Subfields of Computer Graphics

Modeling

• World geometries are diverse!

How to model/represent curves, surfaces, and volumes

curves

patches (by control points and curves)

meshes (by polygons, usually triangles)

volume data

- How to model/represent curves, surfaces, and volumes
 - Triangle mesh (most popular!)

10K triangles

- How to model/represent curves, surfaces, and volumes
 - Triangle mesh (most popular!)

Subdivision surface

- Choose locations of new vertices as weighted average of original vertices in local neighborhood
- Can generate smooth surface

Subdivision surface

Won the Turing award

Pixar CG pioneers Pat Hanrahan and Edwin Catmull share \$1M Turing Award

Devin Coldewey @techcrunch / 6:01 pm CST • March 18, 2020

Image Credits: Deborah Coleman / Pixar; Andrew Brodhead / Stanford University

- Subdivision surface
 - Geri's game by Pixar (1997)

Lots of 3D editing software

Blender

3dsMax

Maya

Teddy: sketch-based modeling system

• Igarashi et al. (SIGGRAPH 1999)

Capture the real-world geometries

3D scanner

multi-view geometry

depth camera

Animation

• How do the geometry change / move over time

Animation (cont.)

Physically-based character animation

Animation (cont.)

Keyframe animation

Animation (cont.)

Keyframe animation

Motion capture

Motion capture

Facial capture

facial capture

Motion and facial capture

Motion and facial capture

Group behavior

Rendering

• How do we model appearance and perceive things

rendered image

3D virtual world

Rendering

Generate a 2D image from a 3D world description

• Perspective pinhole camera in graphics

Ray tracing v.s. rasterization

virtual camera

virtual camera

• How to determine the **closest** surfaces for rasterization?

- How to determine the **closest** surfaces for rasterization?
 - Painter's algorithm
 - Drawing order: S1 \rightarrow S2 \rightarrow S3

- How to determine the **closest** surfaces for rasterization?
 - Z-buffer
 - Use an additional buffer for keeping the closeting distance

Physically-based rendering

 Uses physics and math to simulate the interaction between matter and lights, realism is the primary goal

- Physically-based rendering
 - The rendering equation [Kajiya 1986]

Materials

 $f_r(x, \omega_o \leftarrow \omega_i)$

Texture

how to model a painting in the virtual world?

can we model its geometry with 2 triangles?

- Used to represent **spatially-varying** data
- Decouple materials from geometry

- Need parameterization of surface
 - Map from 3D vertices to 2D texture coordinate
 - $(x, y, z) \rightarrow (u, v)$

• Texture and parameterization (modeling)

• Texture and parameterization (modeling)

• More texture types

How to Generate a Realistic Image?

Complex lighting

• Refraction and dispersion

• Caustics

• Realistic materials

• Realistic materials + textures

• Translucent objects

• Hairs and fur

• Volume (participating media)

• Depth of field

• Motion blur

Revisit: Ray Tracing v.s. Rasterization

virtual camera

virtual camera

Rasterization

- Rasterization is more friendly to hardware and usually has higher parallelism
- But it is more difficult to simulate effects such as reflection, refraction, shadows, and global illumination
 - Need specialized algorithms

Ray Tracing

 Ray tracing is more general for simulating a wide variety of light transport paths

Ray Tracing

 However, its simulator usually has a slow convergence rate and produces lots of noises when samples are not enough

Why Ray Tracing

Environment map

Ray-traced reflections

Real-time Ray Tracing

• FIRST DAY: A Star Wars short film made with UE5

Real-time v.s. Offline Graphics

Animation Production Pipeline

story

text treatment

storyboard

voice

storyreel

look and feel

Animation Production Pipeline (cont.)

modeling / articulation

layout

animation

shading / lighting

rendering

final touch

Animation Production Pipeline

Next Week

- We will dive into 3D graphics deeper by
 - Giving an example of 3D model file
 - Talking about several different 3D coordinate systems and 3D transformation
 - Going through the graphics pipeline of rasterization-based rendering
 - Introducing some simple lighting models
 - Introducing some simple materials