

Bitmapped Images

Multimedia Techniques & Applications Yu-Ting Wu

Outline

- Overview
- Image compression
- Image manipulation
- Geometrical transformations

Overview

- Record the value of every pixel in the image
- Image size is the main cost for the simplicity
- Images created from external devices are usually in a bitmapped fashion
 - Digital cameras
 - Scanners

scanner

Resolution

- A measure of **how finely** a device approximates continuous images using finite pixels
 - Closely related to sampling rates
- Two ways of specifying resolution
 - Printers and scanners: number of dots per unit
 - Dots per inch (dpi)
 - Ex: consumer printer (600 dpi), book production (1200 2700 dpi), scanners (300 dpi 3600 dpi)
 - Video: size of a frame measured in pixels
 - Ex: 640 x 480, 768 x 576
 - Can translate into the form of dpi if you know the physical dimension of the display device

Image Compression

Image Compression

Motivation

- Faithfully store all pixel values of an image takes lots of memory space
- Human eyes can tolerate some minor errors in images
 - Digital representation is an approximation itself

Assumption

• Images are usually **smooth** and have some **spatial coherence**

Compression Methods

- Spend some computation efforts to earn saving in space
- The effectiveness depends on the content of the compressed image
 - Image size can become bigger after applying compression
 - Definitely true, otherwise, any data can be compressed into one byte

128 bytes →256 bytes for a row (RLE)

Compression Methods (cont.)

Lossless compression

- No information will lose during a compression/decompression cycle
- Ex: run-length encoding (RLE), variable-length coding

Lossy compression

- Discard some information during the compression process and the information can **never** be recovered
- Ex: JPEG

Run-Length Encoding (RLE)

- The simplest compression technique
- Each time store a value, followed by a **count** to indicate a number of consecutive pixels of that value
- Example
 - RLE for row1: 128 128
 - 128 bytes (raw) v.s. 2 bytes (using short)
 - RLE for row2: 128 32 0 64 128 32
 - 128 bytes (raw) v.s. 6 bytes (using short)

Huffman Coding

- The best-known variable length coding
- Lossless compression
- Example:

Assume an 8 x 8 image containing 6 different pixel intensities We can count their occurrence:

intensity	20	60	100	140	180	220
occurrence	5	6	25	16	9	3

- Algorithm
 - Build a Huffman tree

3

• Sort the occurrence of intensity

5

25

Merge the two with the smallest occurrence, and sort again

9

16

6

- Algorithm
 - Build a Huffman tree
 - Keep doing ...

- Algorithm
 - Build a Huffman tree
 - Keep doing ...

Algorithm

8

5

= 2.31 (compared to raw, 8 bit, and naïve encoding, 3 bit)

JPEG Compression

- JPEG is the most important lossy compression technique, which stands for Joint Photographic Experts Group
 - Related file formats: *.jpg / *.jpeg / *.jpe / *.jfif / *.jfi / *.jif
- It works because image data can tolerate a certain amount of data loss

- RGB → YCbCr
 - People are more sensitive to intensity (Y) and less sensitive to color (Cb, Cr)
 - Cb and Cr are lower frequency and have more spatial coherence
 - Compress Cb and Cr; while keep Y as it is

- Divide into 8x8 blocks (for Cb & Cr)
 - The entire image is too difficult to compress
 - Small image block has higher coherence

- Discrete Cosine Transform (DCT)
 - A method for transforming a waveform into its frequency domain
 - The DCT of an image block is the coefficients of different cosines of the image block

Quantization

- Human are less sensitive to high-frequency signal
- Use fewer bits for high-frequency signals in the DCT result and vice versa
- This step is the reason of lossy compression
- After this step, many components will end up with zero coefficients

Zigzag ordering

- For later Huffman encoding
- Result in a longer zero sequence

RLE / Huffman encoding

- Different strategy for DC and AC term
- The DC components of different blocks are encoded using Huffman algorithm
- The AC components within a block are encoded using RLE

- The decompression of JPEG data is done by reversing the compression process
- We can control the degree of compression by altering the amount of quantization
- JPEG compression usually achieves very high compression rate for natural images (5% of the original size)

Image Manipulation

Image Manipulation

Motivations

- Correct deficiencies in an image (e.g., noise, red-eye)
- Create images that are difficult or impossible to make naturally (e.g., glow)
- Type of image manipulations
 - Pixel point processing
 - Pixel group processing

Pixel Point Processing

Compute a pixel's new value solely on the basis of its old value mapping function

p' = f(p)

- Some examples
 - Adjustment of brightness
 - Adjustment of contrast
 - Change the black and white levels

Color Curve

- The operations can be considered generally as altering the mapping function *f*
- Color curve

Histogram

 An approximate representation of the distribution of numerical data

Pixel Group Processing

- Compute each pixel's new value as a function not just of its old value, but also of the values of neighboring pixels
- Usually related to filtering
 - For a pixel of an image, specify a two-dimensional array of weights of its neighbors
 - Several types of filters
 - Smoothing
 - Sharpening
 - Detecting edge

Box Filter

• Each neighbor has the same weight

Box Filter (cont.)

convolution mask convolution kernel

image (signal)

(1/9*0+1/9*0+1/9*0+ 1/9*0+1/9*0+1/9*0+ 1/9*9+1/9*9+1/9*9)

filtered image (signal)

Output g(x,y)

Box Filter (cont.)

• 1D visualization of kernel weight

box filter

gaussian filter

Gaussian Filter

- The weight of neighbor falls exponentially with its distance to the filtered pixel
 - Standard deviation α controls the speed of decreasing

Gaussian Filter (cont.)

Box Filter v.s. Gaussian Filter

original image

box filter

gaussian filter

.

Bilateral Filter

• Properties of Gaussian filter

- Problems of Gaussian filter
 - Does smooth images
 - But smoothes too much: edges are blurred
 - Only spatial distance matters
 - No edge term

spatial distance

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma} (||\mathbf{p} - \mathbf{q}||) I_{\mathbf{q}}$$

$$g(x, y) = \frac{1}{2\pi\sigma^{2}} e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

S

- Problems of Gaussian filter
 - Same Gaussian kernel everywhere

output

 Combine another Gaussian weight computed by intensity difference (edge preserving)

spatial distance

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma} \left(\| \mathbf{p} - \mathbf{q} \| \right) I_{\mathbf{q}}$$

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} \left(\| \mathbf{p} - \mathbf{q} \| \right) G_{\sigma_{r}} \left(\underbrace{I_{\mathbf{p}} - I_{\mathbf{q}}}_{\mathbf{p}} \right) I_{\mathbf{q}}$$
spatial distance range (intensity) distance
NEW!

Visualization

• Parameters

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- Spatial sigma σ_s : spatial extent of the kernel, size of the considered neighborhood
- Range sigma σ_r : "minimum" amplitude of an edge

 $\sigma_{\!\scriptscriptstyle
m S}$

• Parameters

 $\sigma_{\rm r} = 0.25$

(Gaussian blur)

 $\sigma_{\rm r} = \infty$

input

$$\sigma_{\rm s}=6$$

Bilateral Filter Application (cont.)

• Denoising

noisy input

Median Filter 5x5

Bilateral Filter Application (cont.)

• Denoising

noisy input

Bilateral Filter 7x7

Bilateral Filter Application (cont.)

• Denoising

noisy input

Gaussian Filter

Bilateral Filter

Sobel Filter

Negative weights are commonly used for edge detection

-1	0	+1	
-2	0	+2	
-1	0	+1	

Gx

62 //Sobel(ima newima CV 811 1 0)

Photographic Style Transfer

• Two-scale Tone Management for Photographic Look, Bae et al. SIGGRAPH 2006

Motivation

Ansel Adams Clearing Winter Storm

An Amateur Photographer

Motivation

Ansel Adams Clearing Winter Storm style transferred result (an imitation of Ansel Adams)

Observation

- Different photographers have different tonal styles
 - Global contrast

Observation

- Different photographers have different tonal styles
 - Global contrast
 - Local contrast

Ansel Adams

- Goal
 - Transfer look between photographers

input image

• Algorithm

input image

Photographic Style Transfer (cont.)

- Algorithm
 - · Separate global and local contrast
 - Gaussian filter produces blurring and halos

input image

Photographic Style Transfer (cont.)

- Algorithm
 - · Separate global and local contrast
 - Bilateral filter can do a better job

• Algorithm

• Separate global and local contrast

- Algorithm
 - Adjust global contrast by histogram matching

• Algorithm

• Adjust local contrast by uniformly scaling

- Algorithm
 - Sometimes the local contrast is not uniform

Algorithm

Textureness computation

textureness

Algorithm

• Non-uniformly increase local contrast based on textureness

• Algorithm

• Combine global and local contrast

Results

Results

Geometrical Transformations

Types of Geometrical Transformations

- Scaling
- Translation
- Reflection
- Rotation
- Shearing
- For bitmapped images, we have to transform every pixel, and will often require the image to be resampled

Forward Mapping and Inverse Mapping

Forward Mapping and Inverse Mapping

(x', y') = (2x, 2y)

Image Scaling

- We will use image scaling as an example
- Assume we want to obtain an image which is s times larger than the original image

forward mapping

$$(x', y') = (sx, sy)$$

inverse mapping

$$(\mathsf{x},\mathsf{y})=(\mathsf{x}'/\mathsf{s},\mathsf{y}'/\mathsf{s})$$

Image Scaling (cont.)

Three strategies to obtain an estimation of X

nearest neighbor

 P_3 is closest $(1-a)(1-b)P_1 + (a)(1-b)P_2 +$ Use P_3 's pixel value $(1-a)(b)P_3 + (a)(b)P_4$

bicubic interpolation

using curve to compute weight (nonlinear)
• Example: scale an image from 160 x 120 to 800 x 600

• Example

nearest neighbor

bilinear interpolation

bicubic interpolation

• Example

nearest neighbor

bilinear interpolation

bicubic interpolation

• Example

original

nearest neighbor

bilinear interpolation

bicubic interpolation

OpenCV