

High Dynamic Range Imaging

Multimedia Techniques & Applications Yu-Ting Wu

(this slides are borrowed from Prof. Yung-Yu Chuang)

High Dynamic Range (HDR) Imaging

Why do We Need HDR

- Camera is an imperfect device for measuring the radiance distribution of a scene because it cannot capture the full spectral content and dynamic range
- Limitations in sensor design prevent cameras from capturing all information passed by lens

Camera Pipeline

Camera Pipeline (cont.)

Real-world Response Functions

- In general, the response function is not provided by camera makers who consider it part of their proprietary product differentiation
- In addition, they are beyond the standard gamma curves

The World is High Dynamic Range

The World is High Dynamic Range (cont.)

Real-world Dynamic Range

- Eye can adapt from $\sim 10^{\text{-6}}$ to $10^{6} \, cd/m^2$
- Often 1:100,000 in a scene
- Typical 1:50, max 1:500 for pictures

Camera is Not a Photometer

Limited dynamic range

- Perhaps use multiple exposures?
- Unknown, nonlinear response
 - Not possible to convert pixel values to radiance
- Solution
 - Recover response curve from multiple exposures, then reconstruct the radiance map

Varying Exposure

- Way to change exposure
 - Shutter speed
 - Aperture

Shutter Speed

- Note: shutter times usually obey a power series each "stop" is a factor of 2
- 1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec

Varying Shutter Speed

HDRI Capturing from Multiple Exposures

- Capture images with multiple exposures
- Image alignment (even if you use tripod, it is suggested to run alignment)
- Response curve recovery
- Ghost / flare removal

Image Alignment

- We will introduce a fast and easy-to-implement method for this task, called Median Threshold Bitmap (MTB) alignment technique
- Consider only **integral translations**. It is enough empirically
- The inputs are *N* grayscale images (you can either use the green channel or convert them into grayscale by *Y*=(54R+183G+19B)/256)
- MTB is a binary image formed by thresholding the input image using the median of intensities

Multimedia Techniques and Applications 2022

Why is MTB Better Than Gradient?

- Edge-detection filters are dependent on image exposures
- Taking the difference of two edge bitmaps would not give a good indication of where the edges are misaligned

Results of MTB

 Success rate = 84%. 10% failure due to rotation. 3% for excessive motion and 3% for too much high-frequency content.

Recover Response Curve

• We want to obtain the inverse of the response curve

Idea behind the Math

Idea behind the Math (cont.)

plot of g(Zij) from three pixels observed in five images, assuming unit radiance at each pixel

Idea behind the Math (cont.)

Basic Idea

- Design an objective function
- Optimize it

Math for Recovering the Response Curve

$$Z_{ij} = f(E_i \Delta t_j)$$

f is monotonic, it is invertible

$$\ln f^{-1}(Z_{ij}) = \ln E_i + \ln \Delta t_j$$

let us define function $g = \ln f^{-1}$

$$g(Z_{ij}) = \ln E_i + \ln \Delta t_j$$

minimize the following

$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \left[g(Z_{ij}) - \ln E_i - \ln \Delta t_j \right]^2 + \lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} g''(z)^2$$
$$g''(z) = g(z-1) - 2g(z) + g(z+1)$$

- We want $N(P-1) > (Z_{max} Z_{min})$ If P = 11, N ~ 25 (typically 50 is used)
- We prefer that selected pixels are well distributed and sampled from constant regions
- It is an overdetermined system of linear equations and can be solved using SVD

Matlab Code

```
÷
 gsolve.m - Solve for imaging system response function
%
%
% Given a set of pixel values observed for several pixels in several
 images with different exposure times, this function returns the
 imaging system's response function g as well as the log film irradiance
% values for the observed pixels.
%
%
 Assumes:
%
%
  Zmin = 0
%
  Zmax = 255
÷
% Arguments:
%
%
  Z(i,j) is the pixel values of pixel location number i in image j
  B(j) is the log delta t, or log shutter speed, for image j
÷
          is lamdba, the constant that determines the amount of smoothness
%
   1
%
         is the weighting function value for pixel value z
  w(z)
%
%
 Returns:
%
%
  g(z) is the log exposure corresponding to pixel value z
  lE(i) is the log film irradiance at pixel location i
%
÷
```

```
function [g,lE]=gsolve(Z,B,l,w)
n = 256;
A = zeros(size(Z,1) * size(Z,2) + n+1, n+size(Z,1));
b = zeros(size(A,1),1);
k = 1;
                    %% Include the data-fitting equations
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
    A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
    k=k+1;
  end
end
A(k, 129) = 1; %% Fix the curve by setting its middle value to 0
k=k+1;
for i=1:n-2 %% Include the smoothness equations
  A(k,i) = 1*w(i+1); A(k,i+1) = -2*1*w(i+1); A(k,i+2) = 1*w(i+1);
  k=k+1;
end
x = A b:
                    %% Solve the system using SVD
q = x(1:n);
lE = x(n+1:size(x,1));
```

Constructing HDR Radiance Map

$$\ln E_i = g(Z_{ij}) - \ln \Delta t_j$$

combine pixels to reduce noise and obtain a more reliable estimation

$$\ln E_{i} = \frac{\sum_{j=1}^{P} w(Z_{ij})(g(Z_{ij}) - \ln \Delta t_{j})}{\sum_{j=1}^{P} w(Z_{ij})}$$

Reconstructed Radiance Map

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005

Reconstructed Radiance Map (cont.)

- What is this for?
 - Human perception
 - Vision / graphics applications

Recap: Environment Lighting

- Environment light illuminates the scene from a virtual sphere at infinite distance
- The spherical energy distribution is usually represented with longitude-latitude images
- Also called image-based lighting (IBL)

Recap: Environment Lighting

• Widely used in digital visual effects and film production

Automatic Ghost Removal

before

Weighted Variance

Moving objects and high-contrast edges render high variance

Weighted Variance

Moving objects and high-contrast edges render high variance

Result of Ghost Removal

Ghost Removal by Patch-based HDR

Input LDR sources

Reconstructed LDR images

Final tonemapped HDR result

More Examples (I)

More Examples (I)

More Examples (II)

More Examples (II)

HDR Becomes Common Practices

- Many cameras has bracket exposure modes
- For example, since iPhone 4, iPhone has HDR option
 - But it could be more exposure blending rather than true HDR

References

References

- Paul E. Debevec, Jitendra Malik, <u>Recovering High Dynamic Range Radiance</u> <u>Maps from Photographs</u>, SIGGRAPH 1997.
- Tomoo Mitsunaga, Shree Nayar, Radiometric Self Calibration, CVPR 1999.
- Mark Robertson, Sean Borman, Robert Stevenson, <u>Estimation-Theoretic</u> <u>Approach to Dynamic Range Enhancement using Multiple Exposures</u>, Journal of Electronic Imaging 2003.
- Michael Grossberg, Shree Nayar, <u>Determining the Camera Response from</u> <u>Images: What Is Knowable</u>, PAMI 2003.
- Michael Grossberg, Shree Nayar, <u>Modeling the Space of Camera Response</u> <u>Functions</u>, PAMI 2004.
- Srinivasa Narasimhan, Shree Nayar, <u>Enhancing Resolution Along Multiple</u> <u>Imaging Dimensions Using Assorted Pixels</u>, PAMI 2005.
- G. Krawczyk, M. Goesele, H.-P. Seidel, <u>Photometric Calibration of High</u> <u>Dynamic Range Cameras</u>, MPI Research Report 2005.
- G. Ward, <u>Fast Robust Image Registration for Compositing High Dynamic</u> <u>Range Photographs from Hand-held Exposures</u>, jgt 2003.