

Vector Graphics

Multimedia Techniques & Applications Yu-Ting Wu

Outline

- Overview
- Fundamentals
- Shapes
- Stroke and fill
- Transformation

Overview

- Images of vector graphics are built up using shapes that can easily be described mathematically
- Vector graphics provide an elegant way of constructing digital images whose representation is
 - Compact
 - Scaleable
 - Resolution-independent
 - Easy to edit

Uses of Vector Graphics

- Graphics that will be scaled (or resized)
 - Architectural drawings or CAD programs
 - Flowcharts
 - Logos
- Cartoons and clipart
- Graphics on websites
- Fonts and specialized text effects

Uses of Vector Graphics (cont.)

- 3D computer graphics can also be considered as one type of vector graphics
 - Use math to describe shapes, materials, and light-surface interaction
 - Generate an image captured by a virtual camera

Fundamentals

Coordinates

- An image is stored as a rectangular array of pixels, so a natural way of identifying a single pixel is by giving its column and row number in the rectangular array
- The pair of column and row number is called **coordinate**

coordinate A (3, 7) column row

B (7, 3)

C (0, 0) origin

Coordinates (cont.)

- The coordinates of pixels in an image must be integer values between zero and the horizontal (for x coordinates) or vertical (for y coordinates)
- But we can generalize to a coordinate system that has any real value (including negative ones)

Vector

- Pairs of coordinates can be used not only to define points, but also to define displacements
- Example: to get from A (3, 7) to B (7, 3), we need to move 4 units to the right, and 4 units down (-4 units up)

Coordinates and Vector

- The generalization of coordinate system lets us identify points in space
- Using **letters** to represent unknown values
- Using equations to specify relationships between coordinates
- Example:

x = y

means a straight line passing through the origin at an angle 45 degree from south-west to north-east or all points located on the line

Rendering of Math

- When it becomes necessary to render a vector drawing, the stored values (e.g., end points of a line) are used in conjunction with the general form of the description of each class of object
 - Can be considered as sampling
- Example: y = 5x/2 + 1
 pass through (0, 1), (1, 4), (2, 6), (3, 9) ...

- Jaggedness are inevitable!
 - Due to the use of a grid of discrete pixels

Anti-aliasing

- The process of rendering a vector object to produce an image made up of pixels can usefully be considered as a form of **sampling** and **reconstruction**
 - The x and y coordinates can very infinitesimally
 - We approximate them by a sequence of pixel values at **fixed** finite intervals
 - Jaggies are a form of aliasing caused by undersampling
 - At an edge whose brightness change directly from one value to another without any intermediate gradation, its frequency domain will include infinitely high frequencies
 - As a result, no sampling rate will be adequate to ensure perfect reconstruction

Anti-aliasing (cont.)

- Anti-aliasing is a **practical** technique to reduce the jaggies
- Use intermediate grey values
 - In frequency domain, it relates to reduce the frequency of the signal
- Coloring each pixel in a shade of grey whose brightness is proportional to the area of the intersection between the pixels and a "one-pixel-wide" line

Shapes

Shapes in Vector Graphics

- The shapes in a vector graphics editor are usually restricted to those with simple mathematical representation, such as
 - Rectangles (and squares)
 - Ellipses (and circles)
 - Straight lines
 - Polygons
 - Smooth curves
- Shapes built up out of these elements can be filled with color, patterns, or gradients
- We can also easily move, rotate, or scale these shapes

Shapes in Vector Graphics (cont.)

- Example: circle
 - Center point (x, y)
 - Radius (r)

Curves

- Lines, rectangles, and ellipses are suitable for drawing technical diagrams
- But less constrained drawing and illustration requires more versatile shapes: (Bezier) curves

Bezier Curves

- Specified by control points
 - A set of points that influence the curve's shape
 - May be 2, 3, 4 or more

- Properties of control points
 - Control points are not always on curve
 - The order of curve equals the number of points minus one
 - Two points: linear curve (straight line)
 - Three points: quadratic curve (parabolic)
 - Four points: cubic curve
 - A curve is always inside the **convex hull** of control points

- Main value of Bezier curves
 - By moving the points, the curve is changing in an intuitive way
 - Demo: <u>https://javascript.info/bezier-curve</u>

- Construct a Bezier curve using **De Casteljau's algorithm**
- Example: three-points Bezier curve

All red points created from t = 0 to 1 make the Bezier curve!

- Build line segments using P1, P2, and P3 (two brown segments)
- For a value *t* moving from 0 to 1, on
 each brown segment, take a point
 located on the distance
 proportional to *t* from its beginning
 (two brown points)
- Connect the **two brown points**, forming a **blue segment**
- On the blue segment, take a point located on the distance proportional to t from its beginning (red point)

- Construct a Bezier curve using De Casteljau's algorithm
- Example: three-points Bezier curve

- Construct a Bezier curve using De Casteljau's algorithm
- Example: four-points Bezier curve

• Other possible shapes of Bezier curves

2

3

Bezier Curves (cont.)

- Construct a Bezier curve using mathematical formula
- Two-points curve

$$P = (1 - t)P_1 + tP_2$$

• Three points curve

$$P = (1-t)^2 P_1 + 2(1-t)tP_2 + t^2 P_3$$

• Four points curve

$$P = (1-t)^{3}P_{1} + 3(1-t)^{2}tP_{2} + 3(1-t)t^{2}P_{3} + t^{3}P_{4}$$

Path

- A single Bezier curve on its own is rarely something we want in a drawing
- What makes Bezier curve useful is the ease with which they can be combined to make more elaborate curves and irregular shapes
- A collection of lines and curves is called a **path**

Stroke and Fill

Stroke and Fill

- Mathematically a path is infinitesimally thin because points are infinitesimally small
- Two ways to make a path visible
 - Stroke
 - Weight (width)
 - Color
 - Dashed
 - Fill
 - Single color
 - Gradient
 - Patterns

Transformation

Transformation of Vector Graphics

- The actual pixel values that makes up a vector image needs to be computed until it is displayed
- We can transform the image by **editing the model** of the shape stored in the computer
 - Transform the control points or parameters
- Example: move a line segment: (4, 2) ⇔ (10, 2) up by 5 units
 - Add 5 units to the y-coordinates
 - Produce a new line segment: $(4, 7) \Leftrightarrow (10, 7)$

Transformation of Vector Graphics (cont.)

- Types of transformation
 - Translation
 - Scaling
 - Rotation (about a point)
 - Reflection (about a line)
 - Shearing

translation

Ν

scaling

rotation

reflection

shearing

Transformation of a Point

 Transformation of a point can be represented by the multiplication of a column vector (point, 3 x 1) and a transformation matrix (3 x 3)

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

Translation

 Given a point p(x, y) and a translation distance T(t_x, t_y), the new point p' after translation is p' = p + T

$$\begin{aligned} x' &= x + t_x \\ y' &= y + t_y \end{aligned}$$

Matrix-vector multiplication

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x\\0 & 1 & t_y\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

Scaling

Given a point p(x, y) and a scaling factor S(s_x, s_y), the new point p' after scaling is p' = S p

$$\begin{aligned} x' &= x * s_x \\ y' &= y * s_y \end{aligned}$$

Matrix-vector multiplication

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0\\0 & s_y & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

Rotation

Given a point *p(x, y)*, rotate it with respect to the origin by *θ* and get the new point *p*' after rotation

Rotation (cont.)

Given a point *p(x, y)*, rotate it with respect to the origin by *θ* and get the new point *p*' after rotation

$$x = r\cos(\phi) \qquad y = r\sin(\phi)$$
$$x' = r\cos(\phi + \theta) \qquad y' = r\sin(\phi + \theta)$$

$$\begin{aligned} x' &= r\cos(\phi + \theta) \\ &= r\cos(\phi)\cos(\theta) - r\sin(\phi)\sin(\theta) \\ &= x\cos(\theta) - y\sin(\theta) \end{aligned}$$

$$y' = r\sin(\phi + \theta)$$

= $x\sin(\phi)\cos(\theta) + r\cos(\phi)\sin(\theta)$
= $y\cos(\theta) + x\sin(\theta)$

Rotation (cont.)

Given a point *p(x, y)*, rotate it with respect to the origin by *θ* and get the new point *p*' after rotation

$$x' = r\cos(\phi + \theta)$$

= $x\cos(\theta) - y\sin(\theta)$
 $y' = r\sin(\phi + \theta)$
= $y\cos(\theta) + x\sin(\theta)$

Matrix-vector multiplication

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

Put it All Together

- Translation $\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$
- Scaling
- Rotation $\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\\sin(\theta) & \cos(\theta) & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$
- Using 3x3 matrix allows us to perform all transformations using matrix/vector multiplications
 - We can also **pre-multiply** all the matrices together

 $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

• We call the (x, y, 1) representation for (x, y) **homogeneous coordinate**

Scaling Revisit

• The standard scaling matrix will only anchor at (0, 0)

- Scaling about an arbitrary pivot point $Q(q_x, q_y)$
 - Translate the objects so that Q will coincide with the origin: $T(-q_{xy} - q_{y})$
 - Scale the object: S(s_x, s_y)
 - Translate the object back: $T(q_x, q_y)$

Rotation Revisit

- The standard rotation matrix is used to rotate about the origin (0, 0)
 - :
- Rotate about an arbitrary pivot point $Q(q_x, q_y)$ by Θ
 - Translate the objects so that Q will coincide with the origin: $T(-q_x, -q_y)$
 - Rotate the object: **R(O)**
 - Translate the object back: $T(q_x, q_y)$

