

Vector Graphics

Multimedia Techniques & Applications Yu-Ting Wu

1

Overview

- Images of vector graphics are built up using shapes that can easily be described **mathematically**
- Vector graphics provide an elegant way of constructing digital images whose representation is
 - Compact
 - Scaleable
 - · Resolution-independent
 - · Easy to edit

2

Multimedia Techniques and Applications 2023

Outline

- Overview
- Fundamentals
- Shapes
- Stroke and fill
- Transformation

2

Multimedia Techniques and Applications 2022

Uses of Vector Graphics

- Graphics that will be scaled (or resized)
 - · Architectural drawings or CAD programs
 - Flowcharts
 - Logos
- · Cartoons and clipart
- · Graphics on websites
- Fonts and specialized text effects

3

Uses of Vector Graphics (cont.)

• 3D computer graphics can also be considered as one type of vector graphics

• Use math to describe shapes, materials, and light-surface interaction

• Generate an image captured by a virtual camera

כ

Coordinates

 An image is stored as a rectangular array of pixels, so a natural way of identifying a single pixel is by giving its column and row number in the rectangular array

Multimedia Techniques and Applications 202

• The pair of column and row number is called **coordinate**

Multimedia Techniques and Applications 2022

Fundamentals

6

Multimedia Techniques and Applications 202

Coordinates (cont.)

- The coordinates of pixels in an image must be integer values between zero and the horizontal (for x coordinates) or vertical (for y coordinates)
- But we can generalize to a coordinate system that has any real value (including negative ones)

7

Vector

- Pairs of coordinates can be used not only to define points, but also to define displacements
- Example: to get from A (3, 7) to B (7, 3), we need to move 4 units to the right, and 4 units down (-4 units up)

displacement from P1 to P2: (x2 - x1, y2 - y1)

two-dimensional vector

9

Multimedia Techniques and Applications 2022

Rendering of Math

- When it becomes necessary to render a vector drawing, the stored values (e.g., end points of a line) are used in conjunction with the general form of the description of each class of object
 - Can be considered as sampling
- Example: y = 5x/2 + 1
 pass through (0, 1), (1, 4), (2, 6), (3, 9) ...
- Jaggedness are inevitable!
 - Due to the use of a grid of discrete pixels

/

Multimedia Techniques and Applications 2022

Coordinates and Vector

- The generalization of coordinate system lets us identify points in space
- Using letters to represent unknown values
- Using equations to specify relationships between coordinates
- Example:

x = y

means a straight line passing through the origin at an angle 45 degree from south-west to north-east or all points located on the line

10

10

Multimedia Techniques and Applications 202

Anti-aliasing

- The process of rendering a vector object to produce an image made up of pixels can usefully be considered as a form of sampling and reconstruction
 - The x and y coordinates can very infinitesimally
 - We approximate them by a sequence of pixel values at fixed finite intervals
 - · Jaggies are a form of aliasing caused by undersampling
 - At an edge whose brightness change directly from one value to another without any intermediate gradation, its frequency domain will include infinitely high frequencies
 - As a result, no sampling rate will be adequate to ensure perfect reconstruction

Anti-aliasing (cont.)

- Anti-aliasing is a practical technique to reduce the jaggies
- Use intermediate grey values
 - In frequency domain, it relates to reduce the frequency of the signal
- Coloring each pixel in a shade of grey whose brightness is proportional to the area of the intersection between the pixels and a "one-pixel-wide" line

Multimedia Techniques and Applications 202

13

13

Multimedia Techniques and Applications 2022

Shapes in Vector Graphics

- The shapes in a vector graphics editor are usually restricted to those with simple mathematical representation, such as
 - Rectangles (and squares)
 - Ellipses (and circles)
 - Straight lines
 - · Polygons
 - · Smooth curves
- Shapes built up out of these elements can be filled with color, patterns, or gradients
- We can also easily move, rotate, or scale these shapes

Multimedia Techniques and Applications 2022

Shapes

14

16

Shapes in Vector Graphics (cont.)

- Example: circle
 - Center point (x, y)
 - Radius (r)

Multimedia Techniques and Applications 2022

15

Curves

- · Lines, rectangles, and ellipses are suitable for drawing technical diagrams
- But less constrained drawing and illustration requires more versatile shapes: (Bezier) curves

Multimedia Techniques and Applications 202

17

Bezier Curves (cont.)

- Properties of control points
 - · Control points are not always on curve
 - The order of curve equals the number of points minus one
 - Two points: linear curve (straight line)
 - Three points: quadratic curve (parabolic)
 - Four points: cubic curve
 - A curve is always inside the convex hull of control points

Multimedia Techniques and Applications 202 **Bezier Curves** • Specified by control points • A set of points that influence the curve's shape • May be 2, 3, 4 or more

18

Bezier Curves (cont.)

- · Main value of Bezier curves
 - By moving the points, the curve is changing in an intuitive way

Multimedia Techniques and Applications 2022

• Demo: https://javascript.info/bezier-curve

Bezier Curves (cont.)

• Construct a Bezier curve using De Casteljau's algorithm

• Example: three-points Bezier curve

24

22

Bezier Curves (cont.)

- Construct a Bezier curve using mathematical formula
- · Two-points curve

$$P = (1-t)P_1 + tP_2$$

• Three points curve

$$P = (1-t)^2 P_1 + 2(1-t)tP_2 + t^2 P_3$$

Four points curve

$$P = (1-t)^{3}P_{1} + 3(1-t)^{2}tP_{2} + 3(1-t)t^{2}P_{3} + t^{3}P_{4}$$

25

25

Multimedia Techniques and Applications 2022

Stroke and Fill

Path

- A single Bezier curve on its own is rarely something we want in a drawing
- What makes Bezier curve useful is the ease with which they can be combined to make more elaborate curves and irregular shapes
- A collection of lines and curves is called a path

an open path

Multimedia Techniques and Applications 2023

Multimedia Techniques and Applications 202

26

Stroke and Fill

- Mathematically a path is infinitesimally thin because points are infinitesimally small
- Two ways to make a path visible
 - Stroke
 - · Weight (width)
 - Color
 - · Dashed
 - Fill
 - Single color
 - Gradient
 - Patterns

27

Transformation

29

Multimedia Techniques and Applications 2022 **Transformation of Vector Graphics (cont.)** Types of transformation Translation Scaling • Rotation (about a point) · Reflection (about a line) Shearing origin scaling translation rotation reflection shearing

Multimedia Techniques and Applications 202

Transformation of Vector Graphics

- The actual pixel values that makes up a vector image needs to be computed until it is displayed
- We can transform the image by editing the model of the shape stored in the computer
 - Transform the control points or parameters
- Example: move a line segment: (4, 2) ⇔ (10, 2) up by 5 units
 - Add 5 units to the y-coordinates
 - Produce a new line segment: $(4, 7) \Leftrightarrow (10, 7)$

30

Multimedia Techniques and Applications 2022

Transformation of a Point

• Transformation of a point can be represented by the multiplication of a column vector (point, 3 x 1) and a transformation matrix (3 x 3)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}_{\mathbf{p}'} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}_{\mathbf{p}}$$

$$x' = ax + by + c$$
$$y' = dx + ey + f$$

Translation

• Given a point p(x, y) and a translation distance $T(t_x, t_y)$, the new point p' after translation is p' = p + T

$$x' = x + t_x$$
$$y' = y + t_y$$

• Matrix-vector multiplication

33

Multimedia Techniques and Applications 202

Rotation

• Given a point p(x, y), rotate it with respect to the origin by $\boldsymbol{\theta}$ and get the new point \boldsymbol{p}' after rotation

· First define

Multimedia Techniques and Applications 20

Scaling

• Given a point p(x, y) and a scaling factor $S(s_x, s_y)$, the new point p' after scaling is p' = Sp

$$x' = x * s_x$$
$$y' = y * s_y$$

· Matrix-vector multiplication

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Multimedia Techniques and Applications 202

Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin by $\boldsymbol{\theta}$ and get the new point \boldsymbol{p}' after rotation

$$x' = r\cos(\phi + \theta) \quad y' = r\sin(\phi + \theta)$$

$$x' = r\cos(\phi + \theta)$$

$$= r\cos(\phi)\cos(\theta) - r\sin(\phi)\sin(\theta)$$

$$= x\cos(\theta) - y\sin(\theta)$$

$$x' = r\sin(\phi + \theta)$$

 $x = r\cos(\phi)$ $y = r\sin(\phi)$

 $y' = r\sin(\phi + \theta)$ $= x\sin(\phi)\cos(\theta) + r\cos(\phi)\sin(\theta)$ $= y\cos(\theta) + x\sin(\theta)$

Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin by Θ and get the new point p' after rotation

$$x' = r\cos(\phi + \theta)$$
$$= x\cos(\theta) - y\sin(\theta)$$
$$y' = r\sin(\phi + \theta)$$
$$= y\cos(\theta) + x\sin(\theta)$$

· Matrix-vector multiplication

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

37

39

Multimedia Techniques and Applications 202

Scaling Revisit

• The standard scaling matrix will only anchor at (0, 0)

- Scaling about an arbitrary pivot point $Q(q_y, q_y)$
 - Translate the objects so that Q will coincide with the origin:
 - $T(-q_{xy} q_{y})$ Scale the object: S(s_w s_v)
 - Translate the object back: $T(q_{xy}, q_{y})$

Multimedia Techniques and Applications 20

Multimedia Techniques and Applications 202

Put it All Together

Translation

Scaling

 $\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$ Rotation

- Using 3x3 matrix allows us to perform all transformations using matrix/vector multiplications
 - We can also pre-multiply all the matrices together
- We call the (x, y, 1) representation for (x, y) homogeneous coordinate

38

40

Rotation Revisit

• The standard rotation matrix is used to rotate about the origin (0, 0)

- Rotate about an arbitrary pivot point $Q(q_v, q_v)$ by θ
 - Translate the objects so that Q will coincide with the origin: $T(-q_{yy}, -q_{yy})$
 - Rotate the object: R(θ)
 - Translate the object back: T(q_{vi} q_v)

