

1

Multimedia Techniques and Applications 2022

Overview

- Images of vector graphics are built up using shapes that can easily be described mathematically
- Vector graphics provide an elegant way of constructing digital images whose representation is
- Compact
- Scaleable
- Resolution-independent
- Easy to edit

Outline

- Overview
- Fundamentals
- Shapes
- Stroke and fill
- Transformation

Multimedia Techniques and Applications 2022

Uses of Vector Graphics

- Graphics that will be scaled (or resized)
- Architectural drawings or CAD programs
- Flowcharts
- Logos
- Cartoons and clipart
- Graphics on websites
- Fonts and specialized text effects

Uses of Vector Graphics (cont.)

- 3D computer graphics can also be considered as one type of vector graphics
- Use math to describe shapes, materials, and light-surface interaction
- Generate an image captured by a virtual camera

5

Multimedia Techniques and Applications 2022

Coordinates

- An image is stored as a rectangular array of pixels, so a natural way of identifying a single pixel is by giving its column and row number in the rectangular array
- The pair of column and row number is called coordinate

8			coordinate
7 -			
6 A	A		A $(3,7)$
$5 \square$			column row
4			
3 2		B	B $(7,3)$
o			
			C (0, 0)
2	34	678	origin

Fundamentals

6

Multimedia Techniques and Applications 2022

Coordinates (cont.)

- The coordinates of pixels in an image must be integer values between zero and the horizontal (for x coordinates) or vertical (for y coordinates)
- But we can generalize to a coordinate system that has any real value (including negative ones)

8

Vector

- Pairs of coordinates can be used not only to define points, but also to define displacements
- Example: to get from $A(3,7)$ to $B(7,3)$, we need to move 4 units to the right, and 4 units down (-4 units up)

displacement from P1 to P2
($\mathrm{x} 2-\mathrm{x} 1, \mathrm{y} 2-\mathrm{y} 1$) two-dimensional vecto

Rendering of Math

- When it becomes necessary to render a vector drawing, the stored values (e.g., end points of a line) are used in conjunction with the general form of the description of each class of object
- Can be considered as sampling
- Example: $y=5 x / 2+1$
pass through $(0,1),(1,4),(2,6),(3,9)$...
- Jaggedness are inevitable!
- Due to the use of a grid of discrete pixels

Anti-aliasing (cont.)

- Anti-aliasing is a practical technique to reduce the jaggies
- Use intermediate grey values
- In frequency domain, it relates to reduce the frequency of the signal
- Coloring each pixel in a shade of grey whose brightness is proportional to the area of the intersection between the pixels and a "one-pixel-wide" line

Multimedia Techniques and Applications 2022

Shapes in Vector Graphics

- The shapes in a vector graphics editor are usually restricted to those with simple mathematical representation, such as
- Rectangles (and squares)
- Ellipses (and circles)
- Straight lines
- Polygons
- Smooth curves
- Shapes built up out of these elements can be filled with color, patterns, or gradients
- We can also easily move, rotate, or scale these shapes

Curves

- Lines, rectangles, and ellipses are suitable for drawing technical diagrams
- But less constrained drawing and illustration requires more versatile shapes: (Bezier) curves

17

Multimedia Techniques and Applications 2022

Bezier Curves (cont.)

- Properties of control points
- Control points are not always on curve
- The order of curve equals the number of points minus one
- Two points: linear curve (straight line)
- Three points: quadratic curve (parabolic)
- Four points: cubic curve
- A curve is always inside the convex hull of control points

Bezier Curves

- Specified by control points
- A set of points that influence the curve's shape
- May be 2, 3, 4 or more

18

Bezier Curves (cont.)

- Construct a Bezier curve using De Casteljau's algorithm
- Example: three-points Bezier curve

- Build line segments using P1, P2 and P3 (two brown segments)
- For a value \boldsymbol{t} moving from 0 to 1 , on each brown segment, take a point located on the distance proportional to \boldsymbol{t} from its beginning (two brown points) Connect the two brown points, forming a blue segment
On the blue segment, take a point located on the distance proportional to t from its beginning (red point)

21

Multimedia Techniques and Applications 2022

Bezier Curves (cont.)

- Construct a Bezier curve using De Casteljau's algorithm
- Example: four-points Bezier curve

Multimedia Techniques and Applications 2022

Bezier Curves (cont.)

- Construct a Bezier curve using De Casteljau's algorithm
- Example: three-points Bezier curve

22

Bezier Curves (cont.)

- Construct a Bezier curve using mathematical formula
- Two-points curve

$$
P=(1-t) P_{1}+t P_{2}
$$

- Three points curve

$$
P=(1-t)^{2} P_{1}+2(1-t) t P_{2}+t^{2} P_{3}
$$

- Four points curve

$$
P=(1-t)^{3} P_{1}+3(1-t)^{2} t P_{2}+3(1-t) t^{2} P_{3}+t^{3} P_{4}
$$

Stroke and Fill

Path

- A single Bezier curve on its own is rarely something we want in a drawing
- What makes Bezier curve useful is the ease with which they can be combined to make more elaborate curves and irregular shapes
- A collection of lines and curves is called a path

26

Transformation

29

Transformation of Vector Graphics (cont.)

- Types of transformation
- Translation
- Scaling
- Rotation (about a point)
- Reflection (about a line)
- Shearing

origin

shearing

reflection

translation

rotation

Translation

- Given a point $p(x, y)$ and a translation distance $T\left(t_{x}, t_{y}\right)$, the new point p^{\prime} after translation is $p^{\prime}=p+T$

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- Matrix-vector multiplication

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Rotation

- Given a point $p(x, y)$, rotate it with respect to the origin by θ and get the new point p^{\prime} after rotation
- First define

$$
\theta>0 \text { : rotate }
$$ counterclockwise

 $\theta<0$: rotate
clockwise

Rotation (cont.)

- Given a point $p(x, y)$, rotate it with respect to the origin by θ and get the new point p^{\prime} after rotation

$$
\begin{aligned}
x^{\prime} & =r \cos (\phi+\theta) \\
& =x \cos (\theta)-y \sin (\theta) \\
y^{\prime} & =r \sin (\phi+\theta) \\
& =y \cos (\theta)+x \sin (\theta)
\end{aligned}
$$

- Matrix-vector multiplication

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Scaling Revisit

- The standard scaling matrix will only anchor at $(0,0)$

- Scaling about an arbitrary pivot point $\mathbf{Q}\left(\boldsymbol{q}_{x}, \boldsymbol{q}_{\boldsymbol{y}}\right)$
- Translate the objects so that Q will coincide with the origin: $T\left(-q_{x}-q_{y}\right)$
- Scale the object: $S\left(s_{x} s_{y}\right)$
- Translate the object back: $T\left(q_{x} q_{y}\right)$

