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Outline

• Operating system services

• System calls and APIs

• Operating system structure

• Operating system debugging
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Operating System Services

• User interface

• Program execution

• I/O operations

• File-system manipulations

• Communication

• Error detection

• Resource allocation

• Accounting

• Protection and security
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Operating System Services (cont.)
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Operating System Services (cont.)
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User Interface

• Command line interface (CLI)
• Fetch a command from user and execute it

• Shell (command-line interpreter)

• Ex: CSHELL, BASH

• Allow to some modification based on user behavior and 
preference

• Graphic user interface (GUI)
• Usually with mouse, keyboard, and monitor

• Icons are used to represent files, directories, programs, etc.

• Usually built on CLI

• Most systems have both CLI and GUI
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Command Line Interface
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Bourne Shell (default shell of UNIX ver. 7)



Command Line Interface (cont.)

• Two approaches for the command interpreter
• Contain the codes for executing commands

• Pros: fast

• Cons: file size / painful revision

• Implement commands as system program

• Search execution files on the fly

• Pros: easy to upgrade / keep the interpreter small

• Cons: slow

• Additional issues

• Parameters passing

• Inconsistent interpretation of parameters

• Most OS use a hybrid approach: keep a small subset of 
core functions in interpreter and use exec. for the others
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Graphic User Interface
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Graphic User Interface (cont.)

• Components
• Screen

• Icons

• Folders

• Pointers

• etc.

• History
• Xerox PARC research facilities (1970’s)

• Mouse (1968)

• Mac OS (1980’s)

• Windows 1.0 ~ 11
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Other Interfaces

• Batch

• Touch-screen

• Voice control
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Operating System Services (cont.)
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Communication Models
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• Using either Message Passing or Shared Memory

message passing shared memory
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System Calls and APIs



Operating System Services (cont.)
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System Calls

• Programming interface to the services provided by the 
OS
• An explicit request to the kernel made via software interrupt

• Generally available as assembly-language instructions

• Mostly accessed by programs via a high-level 
Application Programming Interface (API) rather than 
direct system call use
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System Calls (cont.)

• Example: a sequence of system calls for copying a file
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System Calls (cont.)

• Request OS services
• Process control

• End (normal exit) or abort (abnormal)

• Load and execute

• Create and terminate

• Get or set attributes of process

• Wait for a specific amount of time or an event

• Memory dumping, profiling, tracing, allocate, and free

• File management

• Create and delete

• Open and close

• Read, write, and reposition

• Get or set attributes

• Operations for directories
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System Calls (cont.)

• Request OS services (cont.)
• Device management

• Request or release

• Logically attach or detach devices

• Information maintenance

• Get or set time or date

• Get or set system data (e.g., maximum memory for a process)

• Communications

• Send and receive messages

• Message passing or shared memory

• Protection
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Application Programming Interface (API)

• An encapsulation of system calls for user programs

• Provide portability

• Usually implemented by high-level languages
• C library, Java

• Could involve zero or multiple system calls
• abs(): zero

• fopen(): multiple

• malloc(), free() ➔ brk()
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System Calls

API

e.g., Win32 API



API (cont.)

• Three most common APIs
• Win32 API

• For Microsoft Windows

• https://en.wikipedia.org/wiki/Windows_API

• https://docs.microsoft.com/zh-
tw/windows/win32/apiindex/windows-api-
list?redirectedfrom=MSDN

• POSIX API

• POSIX stands for Portable Operating System Interface for Unix

• Used by Unix, Linux, and Max OS X

• https://en.wikipedia.org/wiki/POSIX

• Java

• For Java virtual machine (JVM)
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API (cont.)

• Example: ReadFile() in Win32 API

• Parameters

• HANDLE file: the file to be read

• LPVOID  buffer: a buffer where the data will be read into

• DWORD  bytesToRead: number of bytes to be read into the buffer

• LPDWORD  bytesRead: number of bytes read during the last read

• LPOVERLAPPED  ovl: indicates if overlapped I/O is being used
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Why Do We Need API?

• Simplicity
• API is designed for programmers and applications

• Portability
• API is a unified defined interface

• Efficiency
• Not all functions require OS services or involve kernel
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System Call and API
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System Call and API
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API (library) call

system call



Passing Parameters

• Three general approaches for passing parameters 
between a program and the OS

• Using register

• Store in a table in memory (Linux)
• The address of the table is passed by register

• Push parameters onto the stack by the program
• And pop off by the OS
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Passing Parameters (cont.)

• Store in a table in memory (Linux)
• The address of the table is passed by register
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Overview of OS Structure

• Simple OS architecture

• Layer OS architecture

• Microkernel OS

• Modular OS architecture

• Hybrid systems

• Virtual machine
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Design of an OS

• Start the design by defining goals and specifications

• User goals
• Easy to use and learn

• Reliable

• Safe

• Fast (interactive)

• System goals
• Easy to design and implement

• Easy to maintain

• Reliable

• Error-free

• Efficient
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Policy and Mechanism

• Policy: what needs to be done?
• Example: time sharing after every 100 milliseconds

• Mechanism: how to do something
• Example: timer

• The separation of policy from mechanism is important

• Allow maximum flexibility if policy decisions are to be 
changed later
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Implementation

• Much variation
• Early OSes are implemented by assembly language

• Now high level languages, such as C, C++

• Actually usually a mix of languages
• Lowest levels in assembly

• Main body in C

• System programs in C or C++

• Scripting languages using PERL, Python, shell scripts

• More high-level language, easier to port to other 
hardware
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Simple OS Architecture

• Only one or two levels

• Drawbacks
• Unsafe

• Difficult to enhance
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MS-DOS UNIX



Layered OS Architecture

• Lower levels are independent of upper levels

• Pros: easier debugging and maintenance

• Cons: less efficient and difficult to define layers
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Hardware

Process allocation, Multi-programming

Memory management

Device driver

I/O management

User program

UI



Microkernel OS

• Kernel should be as small as possible
• Move most parts of the original kernels into user space

• Communication is provided by message passing

• Easier for extending and porting

• Slow
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Modular OS Architecture

• Employed by most modern OS
• Object-oriented approach

• Each core component is separate

• Each module talks to the others over known interfaces

• Each module is loadable as needed within the kernel

• Similar to layers but with more flexibility

• Example: Solaris
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Hybrid: Mac OS

• Combine layer and microkernel design
• Aqua graphical user interface

• Applications environments and common services

• BSD

• Command line interface, networking, file systems, POSIX APIs

• Mach

• Memory management

• Remote procedure calls

• Inter-process communication

• Kernel environment

• I/O kit for device drivers

• Dynamic loadable modules
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Application Environment 
and Common Services

Aqua GUI

Mach (microkernel)

BSD

Kernel Environment



Hybrid: iOS

• Structured on Mac OS, added functionalities
• Cocoa Touch

• Objective-C API for developing apps

• Media services

• Layer for graphics, audio, video

• Core services

• Cloud computing ,database

• Core OS

• Based on Mac OS X kernel
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Hybrid: Android

• Developed by Handset Alliance (mostly Google)
• Open source

• Based on Linux kernel (modified)
• Add power management

• Runtime environment
• Core set libraries

• Dalvik VM
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Virtual Machine
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• Layered approach

• Provide an interface that is identical to the underlying 
bare hardware
• Each process is provided with a (virtual) copy of the underlying 

computer



Virtual Machine (cont.)
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• Challenges
• Privileged instructions

user space
(user mode)

privileged 
instruction

interrupt

failed

interrupt



Virtual Machine (cont.)

• Provide complete protection of system resources

• Provide an approach to solve system compatibility problems

• Provide a vehicle for OS research and development

• Provide a mean for increasing resource utilization in cloud 
computing
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• Advantages
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Operating System Debugging



Operating System Debugging

• An activity in finding and fixing errors or bugs (including 
performance problems) that exist in hardware or software

• Terminologies
• Performance tuning

• A procedure that seeks to improve performance by removing 
bottleneck

• Core dump

• A capture of the memory of a process or OS

• Crash

• A kernel failure
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• Debugging



Operating System Debugging (cont.)
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• Performance tuning
• OS must provide means of computing and displaying 

measures of system behavior



Objectives Review

• Identify services provided by an operating system

• Illustrate how system calls are used to provide 
operating system services

• Compare and contrast monolithic, layered, microkernel, 
modular, and hybrid strategies for designing operating 
systems
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