
Operating System Structures

Operating Systems

Yu-Ting Wu

(with slides borrowed from Prof. Jerry Chou and Prof. Tei-Wei Kuo)

Outline

• Operating system services

• System calls and APIs

• Operating system structure

• Operating system debugging

2

Operating Systems 2022

3

Operating Systems 2022

Operating System Services

Operating System Services

• User interface

• Program execution

• I/O operations

• File-system manipulations

• Communication

• Error detection

• Resource allocation

• Accounting

• Protection and security

4

Operating Systems 2022

Operating System Services (cont.)

5

Operating Systems 2022

Operating System Services (cont.)

6

Operating Systems 2022

User Interface

• Command line interface (CLI)
• Fetch a command from user and execute it

• Shell (command-line interpreter)

• Ex: CSHELL, BASH

• Allow to some modification based on user behavior and
preference

• Graphic user interface (GUI)
• Usually with mouse, keyboard, and monitor

• Icons are used to represent files, directories, programs, etc.

• Usually built on CLI

• Most systems have both CLI and GUI

7

Operating Systems 2022

Command Line Interface

8

Operating Systems 2022

Bourne Shell (default shell of UNIX ver. 7)

Command Line Interface (cont.)

• Two approaches for the command interpreter
• Contain the codes for executing commands

• Pros: fast

• Cons: file size / painful revision

• Implement commands as system program

• Search execution files on the fly

• Pros: easy to upgrade / keep the interpreter small

• Cons: slow

• Additional issues

• Parameters passing

• Inconsistent interpretation of parameters

• Most OS use a hybrid approach: keep a small subset of
core functions in interpreter and use exec. for the others

9

Operating Systems 2022

Graphic User Interface

10

Operating Systems 2022

Mac OS X GUI

Graphic User Interface (cont.)

• Components
• Screen

• Icons

• Folders

• Pointers

• etc.

• History
• Xerox PARC research facilities (1970’s)

• Mouse (1968)

• Mac OS (1980’s)

• Windows 1.0 ~ 11

11

Operating Systems 2022

Other Interfaces

• Batch

• Touch-screen

• Voice control

12

Operating Systems 2022

Operating System Services (cont.)

13

Operating Systems 2022

Communication Models

14

Operating Systems 2022

• Using either Message Passing or Shared Memory

message passing shared memory

15

Operating Systems 2022

System Calls and APIs

Operating System Services (cont.)

16

Operating Systems 2022

System Calls

• Programming interface to the services provided by the
OS
• An explicit request to the kernel made via software interrupt

• Generally available as assembly-language instructions

• Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

17

Operating Systems 2022

System Calls (cont.)

• Example: a sequence of system calls for copying a file

18

Operating Systems 2022

System Calls (cont.)

• Request OS services
• Process control

• End (normal exit) or abort (abnormal)

• Load and execute

• Create and terminate

• Get or set attributes of process

• Wait for a specific amount of time or an event

• Memory dumping, profiling, tracing, allocate, and free

• File management

• Create and delete

• Open and close

• Read, write, and reposition

• Get or set attributes

• Operations for directories

19

Operating Systems 2022

System Calls (cont.)

• Request OS services (cont.)
• Device management

• Request or release

• Logically attach or detach devices

• Information maintenance

• Get or set time or date

• Get or set system data (e.g., maximum memory for a process)

• Communications

• Send and receive messages

• Message passing or shared memory

• Protection

20

Operating Systems 2022

Application Programming Interface (API)

• An encapsulation of system calls for user programs

• Provide portability

• Usually implemented by high-level languages
• C library, Java

• Could involve zero or multiple system calls
• abs(): zero

• fopen(): multiple

• malloc(), free() ➔ brk()

21

Operating Systems 2022

OS

System Calls

API

e.g., Win32 API

API (cont.)

• Three most common APIs
• Win32 API

• For Microsoft Windows

• https://en.wikipedia.org/wiki/Windows_API

• https://docs.microsoft.com/zh-
tw/windows/win32/apiindex/windows-api-
list?redirectedfrom=MSDN

• POSIX API

• POSIX stands for Portable Operating System Interface for Unix

• Used by Unix, Linux, and Max OS X

• https://en.wikipedia.org/wiki/POSIX

• Java

• For Java virtual machine (JVM)

22

Operating Systems 2022

https://en.wikipedia.org/wiki/Windows_API
https://docs.microsoft.com/zh-tw/windows/win32/apiindex/windows-api-list?redirectedfrom=MSDN
https://en.wikipedia.org/wiki/POSIX

API (cont.)

• Example: ReadFile() in Win32 API

• Parameters

• HANDLE file: the file to be read

• LPVOID buffer: a buffer where the data will be read into

• DWORD bytesToRead: number of bytes to be read into the buffer

• LPDWORD bytesRead: number of bytes read during the last read

• LPOVERLAPPED ovl: indicates if overlapped I/O is being used

23

Operating Systems 2022

Why Do We Need API?

• Simplicity
• API is designed for programmers and applications

• Portability
• API is a unified defined interface

• Efficiency
• Not all functions require OS services or involve kernel

24

Operating Systems 2022

System Call and API

25

Operating Systems 2022

System Call and API

26

Operating Systems 2022

API (library) call

system call

Passing Parameters

• Three general approaches for passing parameters
between a program and the OS

• Using register

• Store in a table in memory (Linux)
• The address of the table is passed by register

• Push parameters onto the stack by the program
• And pop off by the OS

27

Operating Systems 2022

Passing Parameters (cont.)

• Store in a table in memory (Linux)
• The address of the table is passed by register

28

Operating Systems 2022

29

Operating Systems 2022

System Structure

Overview of OS Structure

• Simple OS architecture

• Layer OS architecture

• Microkernel OS

• Modular OS architecture

• Hybrid systems

• Virtual machine

30

Operating Systems 2022

Design of an OS

• Start the design by defining goals and specifications

• User goals
• Easy to use and learn

• Reliable

• Safe

• Fast (interactive)

• System goals
• Easy to design and implement

• Easy to maintain

• Reliable

• Error-free

• Efficient

31

Operating Systems 2022

Policy and Mechanism

• Policy: what needs to be done?
• Example: time sharing after every 100 milliseconds

• Mechanism: how to do something
• Example: timer

• The separation of policy from mechanism is important

• Allow maximum flexibility if policy decisions are to be
changed later

32

Operating Systems 2022

Implementation

• Much variation
• Early OSes are implemented by assembly language

• Now high level languages, such as C, C++

• Actually usually a mix of languages
• Lowest levels in assembly

• Main body in C

• System programs in C or C++

• Scripting languages using PERL, Python, shell scripts

• More high-level language, easier to port to other
hardware

33

Operating Systems 2022

Simple OS Architecture

• Only one or two levels

• Drawbacks
• Unsafe

• Difficult to enhance

34

Operating Systems 2022

MS-DOS UNIX

Layered OS Architecture

• Lower levels are independent of upper levels

• Pros: easier debugging and maintenance

• Cons: less efficient and difficult to define layers

35

Operating Systems 2022

Hardware

Process allocation, Multi-programming

Memory management

Device driver

I/O management

User program

UI

Microkernel OS

• Kernel should be as small as possible
• Move most parts of the original kernels into user space

• Communication is provided by message passing

• Easier for extending and porting

• Slow

36

Operating Systems 2022

Modular OS Architecture

• Employed by most modern OS
• Object-oriented approach

• Each core component is separate

• Each module talks to the others over known interfaces

• Each module is loadable as needed within the kernel

• Similar to layers but with more flexibility

• Example: Solaris

37

Operating Systems 2022

Hybrid: Mac OS

• Combine layer and microkernel design
• Aqua graphical user interface

• Applications environments and common services

• BSD

• Command line interface, networking, file systems, POSIX APIs

• Mach

• Memory management

• Remote procedure calls

• Inter-process communication

• Kernel environment

• I/O kit for device drivers

• Dynamic loadable modules

38

Operating Systems 2022

Application Environment
and Common Services

Aqua GUI

Mach (microkernel)

BSD

Kernel Environment

Hybrid: iOS

• Structured on Mac OS, added functionalities
• Cocoa Touch

• Objective-C API for developing apps

• Media services

• Layer for graphics, audio, video

• Core services

• Cloud computing ,database

• Core OS

• Based on Mac OS X kernel

39

Operating Systems 2022

Hybrid: Android

• Developed by Handset Alliance (mostly Google)
• Open source

• Based on Linux kernel (modified)
• Add power management

• Runtime environment
• Core set libraries

• Dalvik VM

40

Operating Systems 2022

Virtual Machine

41

Operating Systems 2022

• Layered approach

• Provide an interface that is identical to the underlying
bare hardware
• Each process is provided with a (virtual) copy of the underlying

computer

Virtual Machine (cont.)

42

Operating Systems 2022

• Challenges
• Privileged instructions

user space
(user mode)

privileged
instruction

interrupt

failed

interrupt

Virtual Machine (cont.)

• Provide complete protection of system resources

• Provide an approach to solve system compatibility problems

• Provide a vehicle for OS research and development

• Provide a mean for increasing resource utilization in cloud
computing

43

Operating Systems 2022

• Advantages

44

Operating Systems 2022

Operating System Debugging

Operating System Debugging

• An activity in finding and fixing errors or bugs (including
performance problems) that exist in hardware or software

• Terminologies
• Performance tuning

• A procedure that seeks to improve performance by removing
bottleneck

• Core dump

• A capture of the memory of a process or OS

• Crash

• A kernel failure

45

Operating Systems 2022

• Debugging

Operating System Debugging (cont.)

46

Operating Systems 2022

• Performance tuning
• OS must provide means of computing and displaying

measures of system behavior

Objectives Review

• Identify services provided by an operating system

• Illustrate how system calls are used to provide
operating system services

• Compare and contrast monolithic, layered, microkernel,
modular, and hybrid strategies for designing operating
systems

47

Operating Systems 2022

