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Fig. 1. Bathroom: Equal-time comparison (120s) between stochastic lightcuts (SLC) [Yuksel 2019], resampled importance sampling (RIS) [Bitterli et al. 2020;
Talbot et al. 2005], variance-aware Bayesian online regression (VA-BORAS) [Rath et al. 2020], reinforcement lightcuts learning (RLL) [Pantaleoni 2019] and
our method. SLC and RIS do not importance sample the actual contribution of light clustering and this causes noise. VA-BORAS’s heuristics do not find a
good light clustering configuration to learn a distribution on. RLL learns both the clustering and the sampling distributions, but often does not find a good
cluster, and their sampling distribution does not converge to the target distribution, leaving artifacts in the shadow regions (top row). Our method learns the
clustering using a coarse-to-fine scheme, and our sampling distribution provably converges to the target. Our method achieves the lowest relative mean
square error (rMSE) among all compared methods. The reference is rendered by uniform light sampling in 25 hours.

We present an unbiased online Monte Carlo method for rendering with

many lights. Our method adapts both the hierarchical light clustering and

the sampling distribution to our collected samples. Designing such a method

requires us to make clustering decisions under noisy observation, and mak-

ing sure that the sampling distribution adapts to our target. Our method is

based on two key ideas: a coarse-to-fine clustering scheme that can find good

clustering configurations even with noisy samples, and a discrete stochastic

successive approximation method that starts from a prior distribution and

provably converges to a target distribution. We compare to other state-of-

the-art light sampling methods, and show better results both numerically

and visually.
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1 INTRODUCTION
Rendering with a large number of light sources brings up chal-

lenges for importance sampling, since the sampling needs to take

the geometry, visibility, light intensity, and material properties into

consideration. Two strategies are often applied to reduce the vari-

ance: first, to reduce the number of sampling targets to a manageable

subset, a clustering step is often applied using a light hierarchy (Fig.

2). Important lights are represented by smaller clusters, and less

important ones are approximated by large clusters. Second, existing

methods often employ an online learning process that adapts the

sampling distribution using collected data. Unfortunately, when the

clustering or the sampling distribution does not faithfully repre-

sent the importance of lights, existing methods suffer from high

variance. In this paper, we present a data-driven solution that can

progressively improve both light clustering and sampling using

information collected during rendering. Our method is unbiased,

provably converging to the target distribution, and supports both

direct illumination and virtual point lights.

Fig. 2 shows an example of the importance of clustering. The

scene has two groups of triangle lights. For the shading points

inside the shelf, the lights closer to the shading points are blocked;

thus they are only lit by the farther lights. However, most existing

methods (e.g., BORAS [Vévoda et al. 2018]) ignore visibility when

clustering the lights; therefore they assign fine-grained clustering

to the occluded lights, and approximate the important contributors

with only one cluster. In contrast, our method learns to cluster using

collected data, which allows us to cluster the lights correctly.

Designing an online learning method that simultaneously adapts

the sampling distribution and the clustering faces a dilemma: we
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Fig. 2. The importance of light clustering. (a) shows an example scene with 16 area lights, including 8 dull white lights on the left and 8 strong yellow
lights above the bookshelf. (b) shows the visualization of the lightcuts at an interest point 𝑃 . Vévoda et al.’s BORAS method [2018] constructs the cut using
heuristics without considering visibility. Thus, it cannot locate the important lights within C1. By contrast, our method starts from a cut consisting of C1 and
C2 and progressively refines the nodes in C1 according to the information obtained from online learning. (c) and (d) show the rendered results of Vévoda et
al.’s method and our method, respectively. The error visualizations are shown at the bottom left corner. (e) shows the reference image. Our method produces
an image with much fewer noises than Vévoda et al.’s method because of better adaptive light clustering.

need high-quality samples to obtain good clustering, and high-

quality clustering to have good samples. We address this challenge

with two key ideas: 1) We start from a coarse clustering to accu-

mulate sampling information, and gradually obtain finer clustering

as we collect more samples. 2) We use a stochastic approximation

method [Robbins and Monro 1951] to update the sampling distri-

bution. This allows us to start from a good prior distribution that

leverages the geometry and material information, and provably con-

verges to the target distribution where more factors are involved.

We are heavily inspired by the recent work from Pantaleoni [2019]

(RLL), which also adapts the cluster while rendering. However, we

show that Pantaleoni’s method can often find suboptimal clustering

configurations, and does not converge to the target distribution,

which leads to visual artifacts (e.g., Fig. 1, top row). We also discuss

the connection to reinforcement learning [Dahm and Keller 2017].

We compare to state-of-the-art methods, including Pantaleoni’s al-

gorithm, and show that our method achieves between 1.8× to 7×
lower relative mean square error compared to the best methods

across different scenes in the same amount of time.

2 RELATED WORK
Rendering with many lights. Earlier work in this category focused

on reducing the number of visibility tests [Kok and Jansen 1994;

Ward 1994]. Shirley et al. [1996] use an octree to classify lights into

important and unimportant ones for each shading point, and focus

sampling budget to the important lights. Later methods extend this

idea to use a hierarchy to divide lights into multiple clusters (a

cut). The sampling can be biased [Fernandez et al. 2002; Paquette

et al. 1998], unbiased during the hierarchy construction [Walter

et al. 2005], or unbiased for each individual shading point [Estevez

and Kulla 2018; Liu et al. 2019; Moreau et al. 2019; Pantaleoni 2019;

Vévoda et al. 2018; Yuksel 2019].

Some methods cluster lights by sampling the light transport ma-

trix in a preprocessing step [Hašan et al. 2008; Hašan et al. 2007;

Huo et al. 2015]. Ou and Pellacini [2011] use a hybrid approach

by first grouping the lights using matrix sampling, then forming

hierarchical clusters inside each group. These methods do not adapt

the clustering once it is formed. Although it might be possible to

modify these methods to be progressive, how to do so in an efficient

and automatic way is unclear.

Virtual point light methods [Dachsbacher et al. 2014; Keller 1997]

convert the indirect illumination problem into direct illumination, by

depositing virtual point lights using light tracing. This allows us to

treat both direct lighting and global illumination using a unified ap-

proach. The visibility can be determined using shadow map [Dachs-

bacher and Stamminger 2005; Keller 1997; Ritschel et al. 2008] or

ray tracing [Kollig and Keller 2006; Popov et al. 2015; Walter et al.

2012]. Our method can be used with virtual point lights and belongs

to the ray tracing category.

Many methods learn the importance of light sources in a data-

driven way. Samples are collected either in a preprocessing step

[Georgiev et al. 2012; Wu and Chuang 2013], or with online up-

dates [Donikian et al. 2006; Fernandez et al. 2002; Pantaleoni 2019;

Vévoda et al. 2018].

We build on these approaches and introduce two new ideas: a

coarse-to-fine clustering scheme that allows us to make clustering

decisions on noisy samples, and a discrete stochastic approximation

method that allows our sampling distribution to start from a prior

distribution and converge to our target.

Resampled importance sampling. Importance resampling meth-

ods [Rubin 1987; Talbot et al. 2005] enables sampling of complex dis-

tributions without a hierarchy. It first draws samples from a simpler

distribution, then samples a subset from the first set by weighting

them according to the complex distribution. Resampling has been

used for real-time many-lights sampling along with reusing the spa-

tiotemporal neighbors’ sampling distribution [Bitterli et al. 2020],

The hierarchy-free sampling makes these methods more suitable for

dynamic lights and more GPU friendly, but these methods do not

adapt sampling distribution to visibility in a progressive manner.

Path guiding. Some methods build an importance sampling dis-

tribution of the hemispherical incoming radiance using collected

samples [Dahm and Keller 2017; Lafortune andWillems 1995; Müller

et al. 2017, 2019; Pantaleoni 2020; Vorba et al. 2014]. Müller et al.’s

adaptive quadtree [2017] is related to our adaptive clustering. These
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methods focus on the continuous domain, while we address the

discrete light sampling problem. Directly adapting path guiding

methods to the many-lights problem can be non-trivial, as lights are

sparsely distributed spatially. Accounting for the geometry proper-

ties, such as orientations and positions of lights, is more difficult in

the 5D spatial-directional space.

Hierarchical rendering methods. Hierarchical clustering is often
employed in rendering algorithms [Hanrahan et al. 1991; Keller 2001;

Overbeck et al. 2009] and they share similarities to our progressive

hierarchical refinement. We apply this class of methods to many-

lights sampling.

Reinforcement learning in rendering. Dahm and Keller [2017] ob-

serve the similarity between the rendering equation [Kajiya 1986]

and the expected SARSA reinforcement learning method [Sutton

et al. 1998]. Pantaleoni [2019] applies the idea for sampling light

clusters. Huo et al. [2020] apply deep reinforcement learning for

adaptive sampling and reconstruction. We show the relation of ren-

dering, stochastic approximation [Robbins and Monro 1951], and

reinforcement learning in Section 5.

3 BACKGROUND: RENDERING WITH DIRECT
ILLUMINATION

Given a shading point position 𝑥 with a viewing direction 𝜔𝑜 and a

set of lights L, we are interested in estimating the sum over all the

light contributions 𝐹 :

𝐿(𝑥, 𝜔𝑜 ) =

∑
𝑙 ∈L

𝐹 (𝑥,𝜔𝑜 , 𝑙). (1)

The actual content of the contribution 𝐹 depends on the type of light

𝑙 . If 𝑙 is a point light, then 𝐹 is the product of the geometry term,

visibility, material (i.e., the Bidirectional Scattering Distribution

Function), and the light intensity. On the other hand, if 𝑙 is an area

light, then 𝐹 is an integral over the points on the area on the light. 𝑙

can also be a virtual point light, generated by light tracing [Keller

1997] or bidirectional path tracing [Davidovič et al. 2010; Segovia

et al. 2006]. The contribution of a virtual point light corresponds to

a point light with a potentially directionally-varying intensity. It is

also possible to include the multiple importance sampling weights

in the contribution 𝐹 [Popov et al. 2015; Walter et al. 2012].

When the size of the set L is large (say, thousands or millions),

evaluating the whole discrete sum for each shading point is not prac-

tical. Therefore we rely on Monte Carlo sampling for estimating

Equation (1). However, the variance of the Monte Carlo estima-

tor depends on the importance sampling distribution, and a good

importance sampling distribution depends on the contribution 𝐹 .

To importance sample the discrete sum, we need a way to assign

an importance value for each light. Doing so individually for each

shading-point-light-pair is too expensive: there will be millions of

shading points, and thousands or even millions of lights. Instead,

existing works often importance sample the lights by clustering

them into more manageable non-overlapping subsets C(𝑥 ):

𝐿(𝑥 ) =

∑
𝑐∈C(𝑥 )

∑
𝑙 ∈𝑐

𝐹 (𝑥, 𝑙 ) =

∑
𝑐∈C(𝑥 )

𝐹𝑐 (𝑥 ), (2)

where 𝐹𝑐 (𝑥 ) =

∑
𝑙 ∈𝑐 𝐹 (𝑥, 𝑙 ) and we omit the directional dependency

𝜔𝑜 for brevity, without loss of generality. They then estimate the

double summation using Monte Carlo sampling:

𝐿(𝑥 ) ≈ ⟨𝐿(𝑥 )⟩ =

1

𝑁

𝑁∑
𝑖=1

𝐹 (𝑥, 𝑙𝑖 )

𝑝(𝑙𝑖 |𝑥, 𝑐𝑖 )𝑝(𝑐𝑖 |𝑥 )

, (3)

where 𝑝(𝑐𝑖 |𝑥 ) is the probability of choosing the cluster 𝑐𝑖 given the

shading point 𝑥 , and 𝑝(𝑙𝑖 |𝑥, 𝑐𝑖 ) is the probability for choosing the

light 𝑙𝑖 ∈ 𝑐𝑖 given the shading point and the cluster (or probability

density if 𝑙𝑖 is an area light). Sometimes the sampling can be done

deterministically, e.g., by evaluating all clusters [Walter et al. 2005].

Sometimes the probabilities are independent of 𝑥 , e.g., we can choose

𝑝(𝑙𝑖 |𝑥, 𝑐𝑖 ) based on the light intensity alone.

In addition to applying clustering to lights, we can also apply

clustering to shading points, by letting a group of shading points

share the same or similar light sampling distribution [Donikian et al.

2006; Georgiev et al. 2012; Vévoda et al. 2018; Walter et al. 2006; Wu

and Chuang 2013].

To come up with the importance sampling distributions 𝑝(𝑙𝑖 |𝑥, 𝑐𝑖 )
and 𝑝(𝑐𝑖 |𝑥 ), existing work observed that there are often only a few

lights that are important for a shading point. Typically, they use a

spatial hierarchy to group the lights based on their spatial proximity.

Each node on the spatial hierarchy represents a group of lights. Both

clustering and sampling can then be done using an approximated

contribution of the nodes in the spatial hierarchy. For example,

Walter et al. [2005] cluster the lights by thresholding an error bound

of the clustering contribution 𝐹𝑐 – which can be quickly estimated

without ray tracing by using the bounding box of the lights of a

node. Yuksel [2019] adopts a similar error bound, but instead of

using it for clustering, they use it for sampling by probabilistically

selecting the children of the tree based on the error bound.

Encoding visibility information in the hierarchical structure for

importance sampling is hard [Durand et al. 1997; Fernandez et al.

2002]. Therefore, modern data-driven methods collect the visibil-

ity information using Monte Carlo samples [Bitterli et al. 2020;

Donikian et al. 2006; Georgiev et al. 2012; Vévoda et al. 2018; Wu

and Chuang 2013], either in a preprocessing stage or in an online

setting, to adapt the sampling distribution. These methods still do

not adapt the clustering configuration C(𝑥 ).

Pantaleoni [2019] further adapts the clustering configuration C(𝑥 )

during rendering. They maintain estimated importance and a fixed

cut size for each cluster, and use a split-collapse algorithm to adjust

the cluster configuration by simultaneously splitting a cluster 𝑐

with the largest contribution into its children and merging two

clusters with the smallest contribution. We found that their method

often gets stuck in a suboptimal clustering configuration, and their

estimated importance does not converge to the target distribution,

leading to artifacts in rendering.

Our work builds on the online learning methods above [Donikian

et al. 2006; Pantaleoni 2019; Vévoda et al. 2018]. We share the distri-

bution of light importance among close-by shading points. We adapt

both the sampling distribution and clustering over the light hierar-

chy during rendering. This requires us to address two challenges: 1)

clustering under noisy observation and 2) adapting the sampling

distribution by taking both the information provided by the hierar-

chical structure, and the collected samples into consideration, while

provably converging to the target distribution.
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Fig. 3. Overview of our method. Given a scene and a light hierarchy, our method first spatially partition the scene into cells. Each cell stores a cut on the
light hierarchy to represent the clustering, and we initialize them with a coarse cut. Each cluster on the cut maintains the estimated importance of the lights,
and a variance estimate. To sample a light, we first choose a cluster with probability proportional to its importance. We then sample a light within the cluster
using traditional stochastic lightcuts [Yuksel 2019], and update the statistics using a stochastic approximation algorithm. After a round of sampling, we loop
over the clusters and probabilistically expand the nodes that have large variances and are visited often. We then iterate the process.

4 METHOD
Overview. Fig. 3 shows an overview of our algorithm that jointly

adapts the sampling distribution and light clustering. Our method

is based on two key ideas: 1) To gather reliable statistics, we start

from a coarse cut and refine it over the iterations. 2) We apply

stochastic approximation to update the statistics for our sampling

distribution, making it provably converge to the target distribution.

During a preprocessing phase, we subdivide the 3D scene into cells,

and for each cell, we maintain a table of the approximated mean and

variance over a cut on the light source hierarchy. We importance

sample the cluster based on the estimated mean, and sample the

lights within the cluster using a standard method [Yuksel 2019]. We

then probabilistically expand the clusters based on their variance

and how frequently they are visited, and iterate the process. In this

way, we provide an unbiased, progressive, and data-driven solution

for importance sampling with many lights in a scene. We next detail

each step of our algorithm.

4.1 Initialization
Light hierarchy construction and shading point clustering. Given a

3D scene, we first build a light hierarchy using an orientation-aware

bounding volume hierarchy [Estevez and Kulla 2018]. To cluster

the shading points, we further partition the 3D scene by building

another 5D bounding volume hierarchy based on the positions and

normals of the shading points [Wu et al. 2015]: we choose a cut on

the scene bounding volume hierarchy based on the surface areas of

the nodes in the hierarchy.

Light clustering initialization. We construct a global light cluster-

ing based on the total power of each light cluster. We start from a

coarse light clustering configuration by limiting the cut size to a

small number (usually 4 or 8). We initialize the light clustering for

each scene partition on demand.

4.2 Learning to Sample and Cluster
During rendering, we use Monte Carlo sampling to sample a light

from the hierarchy (Equation (3)). We first sample a cluster accord-

ing to the probability 𝑝(𝑐 |𝑥), then sample a light inside the cluster

according to 𝑝(𝑙 |𝑐, 𝑥 ). For sampling a light inside the cluster, we rely

on the stochastic lightcuts algorithm [Yuksel 2019] (Appendix A).

We sample the cluster by maintaining an approximated importance

𝑄𝑥
(𝑐) for each node 𝑐 , and sample proportionally to the importance:

𝑝(𝑐 |𝑥 ) ∝ 𝑄𝑥
(𝑐). (4)

We want our sampling distribution to start from a good initial

guess, then converges to the target distribution 𝑄𝑥
(𝑐) = 𝐹𝑐 (𝑥)

1
,

where 𝐹𝑐 (𝑥 ) is the contribution of the cluster c evaluated at shading

point 𝑥 . Therefore, we learn the approximated importance using a

stochastic approximation algorithm, commonly used in reinforce-

ment learning. We start from an initial guess provided by the sto-

chastic lightcuts method, which incorporates the geometry and the

material terms, but ignores the visibility. We then iteratively update

the estimates using an exponential moving average:

𝑄𝑥
0

(𝑐) = 𝐿𝑢 (𝑥, 𝑐) (5)

𝑄𝑥
𝑡+1

(𝑐) = (1 − 𝛼𝑡 )𝑄𝑥
𝑡 (𝑐) + 𝛼𝑡 ⟨𝐹𝑐 (𝑥 )⟩, (6)

where 𝐿𝑢 (𝑥, 𝑐) is an upper bound estimate of the contribution for

node 𝑐 (Appendix A), 𝛼𝑡 is a learning rate (step size), and ⟨𝐹𝑐 (𝑥)⟩
is the Monte Carlo contribution of sampling cluster 𝑐 . For each

iteration 𝑡 , we send out 𝑛𝑡 samples, and update the tables after the

iteration is done. We also collect the variance statistics from the

samples for later use.

Since our update is stochastic (⟨𝐹𝑐 (𝑥)⟩ is a random variable),

the learning rate schedule 𝛼𝑡 needs to be chosen carefully for the

successive approximation above to converge to the expectation

𝐹𝑐 (𝑥). For example, the constant learning rate 𝛼𝑡 = 𝛼 adopted

by Pantaleoni [2019] will not always converge. By contrast, it is

known [Robbins and Monro 1951; Sutton and Barto 2018] that

the following conditions ensure the update above to converge, i.e.,

lim𝑡→∞𝑄𝑥
𝑡 (𝑐) = 𝐹𝑐 (𝑥 ) with probability 1:

(1) ⟨𝐹𝑐 (𝑥 )⟩ is an unbiased estimator of 𝐹𝑐 (𝑥 ).

(2) The variance and mean of ⟨𝐹𝑐 (𝑥 )⟩ are bounded.
(3)

∑∞
𝑡=1

𝛼𝑡 = ∞ and

∑∞
𝑡=1

𝛼2

𝑡 < ∞.
To satisfy the criteria, we set the learning rate 𝛼𝑡 =

1

𝛽𝑡𝜔
, where 𝛽

and 𝜔 are parameters that will be given in Section 6.1. We make

1
Since we share the distribution over a group of shading points, the target is the average

over the group.
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the connection to stochastic approximation explicit in Appendix B,

while also showing that the error of the estimated importance scales

linearly with the size of the table and variance. Inspired by the

error rate above, we set the number of samples per-iteration 𝑛𝑡 =

max

(
|C𝑡 |
|C0 | , 2

)
𝑛0, where |C𝑡 | is the number of clusters at iteration 𝑡 ,

and 𝑛0 is a user-specified parameter.

In principle, the light contribution estimate should be the Monte

Carlo estimation ⟨𝐹𝑐 (𝑥 )⟩ =
1

𝑁

∑𝑁
𝑖=1

𝐹 (𝑥,𝑙𝑖 )

𝑝(𝑙𝑖 |𝑥,𝑐𝑖 )𝑝(𝑐𝑖 |𝑥 )
. However, in prac-

tice, we found that when sampling clusters closer to the root of the

hierarchy, the upper bound estimate 𝐿𝑢 can be significantly inaccu-

rate in the presence of the glossy material due to the loose bounding

boxes. Therefore, when updating the table, we approximate 𝑝(𝑙𝑖 |𝑥, 𝑐𝑖 )
with the geometric mean between the actual probability and a uni-

form distribution over all the lights in the cluster.

After each iteration, we loop through each cluster and decide

whether we should split it into its two children or not. Our splitting

considers four criteria: 1) The cluster should be more likely to be

split when the variance is high. 2) We should reduce the probability

of splitting when the cut size is already large. 3) We prefer a cluster

configuration in which all clusters have similar variance. 4) We

should split the clusters which are visited more often. Thus, we set

the probability of splitting a cluster 𝑐 to be:

𝑝𝑡 (𝑐) =

1

1 +
|C𝑡 |
|C0 | 𝑒

−Var𝑡 (𝑐)

Var𝑡 (𝑐)∑
𝑐 ′∈C(𝑥 )

Var𝑡 (𝑐 ′)

(
1 − 1

𝑛𝑐

)
, (7)

where |C𝑡 | is the size of the cut at iteration 𝑡 and 𝑛𝑐 is the number

of times we sample cluster 𝑐 . The first term is a sigmoid function

that measures the variance relative to the size of the cut. The second

term measures the relative variance of the cluster (we add a small

number 10
−6

to the denominator in practice to avoid division by

zero). The third term measures the frequency of visits.

To avoid a large number of clusters, we record the latest iteration

𝑡 ′ that the light clustering is updated and stop refining the cluster

when (𝑡−𝑡 ′)/|C𝑡 | > Γ, where 𝑡 is the current iteration and Γ is a

user-defined parameters, or when the number of cluster reaches a

maximum cut size.

If we choose to split a cluster, we need to initialize the estimated

importance of their children 𝑐1 and 𝑐2. We approximate their impor-

tance using:

𝑄𝑥
𝑡 (𝑐1) = 𝐴𝐿𝑢 (𝑥, 𝑐1) + (1 −𝐴)𝑄𝑥

𝑡 (𝑐) (8)

where 𝐴 = (1 − 𝛼𝑡 )

𝐿𝑢 (𝑥,𝑐
1

)

𝐿𝑢 (𝑥,𝑐
1

)+𝐿𝑢 (𝑥,𝑐
2

)
𝑛𝑐
. 𝑐2 is initialized similarly. We

explain this approximation in Appendix C. Variance and the visit

count 𝑛𝑐1
are initialized to 0.

5 RELATION TO REINFORCEMENT LEARNING
Previous work has shown the connections between Monte Carlo

rendering and reinforcement learning [Dahm and Keller 2017; Panta-

leoni 2019]. Here, we make the connection more explicit by showing

that rendering approximates a particular kind of action-value func-

tion, and show the relation to our update rule. This means that

our method can potentially be applied to other rendering problems,

which can be solved by reinforcement learning.

In reinforcement learning, an agent is tasked to perform an action
𝑎 on the current state 𝑠 , from a policy 𝜋 (𝑠) that maps states to actions.

For each action, the agent gets a reward 𝑟 (𝑠, 𝑎). After an action is

done, the agent is transferred to another state 𝑠 ′ with probability

𝑝(𝑠 ′|𝑠, 𝑎). The long-term reward 𝑄𝜋
(𝑠, 𝑎) for taking an action under

a fixed policy 𝜋 is defined by the Bellman expectation equation:

𝑄𝜋
(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾

∑
𝑠 ′
𝑝(𝑠 ′|𝑠, 𝑎)

∑
𝑎′
𝑝𝜋 (𝑎′|𝑠 ′)𝑄𝜋

(𝑠 ′, 𝑎′), (9)

where 𝛾 is the discount factor that weights the recursive rewards.
Traditionally, the goal of an agent is to maximize the accumulated re-

ward by solving for the best policy 𝜋∗(𝑠) that satisfies the Bellman op-

timal equation𝑄𝜋∗
(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎)+𝛾

∑
𝑠 ′ 𝑝(𝑠 ′|𝑠, 𝑎) argmax

𝑎′𝑄
𝜋∗

(𝑠 ′, 𝑎′).
To solve the optimal policy, we need to solve for the 𝑄 function.

Dahm and Keller [2017] noticed the structural similarity between

the Bellman expectation equation above and a discretized rendering

equation. We can treat 𝑄 as the radiance, 𝑠 as a point on a surface,

𝑎 as a direction, 𝑟 as emission and set 𝛾 = 1. The state transition

from 𝑠 to 𝑠 ′ is the deterministic ray tracing, thus the probability of

reaching the next position 𝑠 ′ given 𝑠 and 𝑎 must be 1. We further

replace the policy probability 𝑝𝜋 with a kernel 𝑘(𝑎, 𝑎′, 𝑠, 𝑠 ′) that
includes the BRDFs and geometry terms. The equation then becomes

a discretized version of the rendering equation:

𝑄∗(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾
∑
𝑎′
𝑘(𝑎, 𝑎′, 𝑠, 𝑠 ′)𝑄∗(𝑠 ′, 𝑎′). (10)

Instead of finding the policy that maximizes the rewards, in ren-

dering, we are interested in finding a policy that is proportional to

the target action-value: 𝑝𝜋 (𝑎 |𝑠) ∝ 𝑄∗(𝑠, 𝑎). Notice that the rendering

equation is recursive, so we can solve it using a fixed-point iteration.

The following stochastic approximation converges to the target 𝑄∗

if the conditions in Section 4.2 are satisfied:

𝑄(𝑠𝑡 , 𝑎𝑡 )← (1 − 𝛼𝑡 )𝑄(𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝛼𝑡

(
𝑟 (𝑠𝑡 , 𝑎𝑡 ) +

𝑘

𝑝𝜋
𝑄(𝑠𝑡+1, 𝑎𝑡+1)

)
,

(11)

where 𝑎𝑡+1 is randomly sampled from the policy, which is propor-

tional to the current action-value estimate, and 𝑝𝜋 is the correspond-

ing probability. We omit the arguments of 𝑘 and 𝑝𝜋 .

Our method can also be seen as a reinforcement learning agent.

For us, the action is selecting a light cluster and sampling a light on

the current lightcut state, the reward is theMonte Carlo contribution,

and the discount factor is 0. Setting 𝛾 = 0 in Equation 11 above leads

to our update equation (Equation 6).

Table 1. We show the number of lights, size of the average cuts, number of
active cells in the shading point clusters, and the consumed memory in our
method for each scene.

Scene lights avg. cut active mem. (MB)

Bathroom 4776 11.27 6402 / 16384 1.4

Bedroom 8032 14.24 9606 / 32768 2.2

Classroom 1216 37.21 8570 / 32768 6.1

Parking-Lot 90862 20.42 3893 / 65536 1.5

Kitchen (VPL) 71311 35.05 6282 / 32768 4.2
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SLC

rMSE: 0.024

RIS

rMSE: 0.164

VA-BORAS

rMSE: 0.075

RLL

rMSE: 0.022

Ours

rMSE: 0.008

Ref.

SLC

rMSE: 0.037

RIS

rMSE: 0.119

VA-BORAS

rMSE: 0.034

RLL

rMSE: 0.046

Ours

rMSE: 0.013

Ref.

Fig. 4. Bedroom and Classroom. Equal-time comparison (120s) with SLC [Yuksel 2019], RIS [Bitterli et al. 2020; Talbot et al. 2005], VA-BORAS [Rath et al.
2020; Vévoda et al. 2018], RLL [Pantaleoni 2019] and our method. VA-BORAS does not cluster the lights properly. RLL produces stripe artifacts at the top row
owing to its update rule. Our method is robust across different configurations and achieves lower error.

SLC

rMSE: 0.352

RIS

rMSE: 0.142

VA-BORAS

rMSE: 0.476

RLL

rMSE: 0.404

Ours

rMSE: 0.050

Ref.

Fig. 5. Kitchen. Equal-time comparison (120s) with 70K virtual point lights on global illumination computation. Our method can handle a large number of
lights while significantly outperforming all other methods numerically and visually.

6 RESULTS

6.1 Experiments Set Up
Compared methods and implementation. We compared with sto-

chastic lightcuts (SLC) [Yuksel 2019], resampled importance sam-

pling (RIS) [Bitterli et al. 2020; Talbot et al. 2005], Bayesian online

regression (BORAS) [Vévoda et al. 2018] and its variance-aware vari-

ant [Rath et al. 2020] (VA-BORAS), reinforcement lightcuts learning

(RLL) [Pantaleoni 2019]. For RIS, we implemented ReSTIR [2020]

without the spatiotemporal reusing. We found VA-BORAS usually

produces similar or better results than BORAS in our experiments.

Therefore, we only show the results of VA-BORAS here. The results

of BORAS can be found in the supplement. We combine all meth-

ods with BRDF importance sampling using multiple importance

sampling [Veach and Guibas 1995] in light contribution estimation

after each method chooses a light out of the light hierarchy. For BO-

RAS, VA-BORAS, RLL, and our method, we use the same bounding-

volume-hierarchy-based scene partition to group the shading points

(Section 4.1). We implemented all methods, including ours, in the

PBRT renderer [Pharr et al. 2016]. All results were generated on an

Intel Core i7-9700 CPU using 4 cores, and 32GB RAM.

Test scenes. We evaluated our method on direct illumination sam-

pling with a diverse set of indoor and outdoor scenes. The scenes

contain very different lighting conditions, with the number of lights

ranging from 8 to 90𝐾 . We also tested our method with two addi-

tional scenes for demonstrating that our method can be extended

to render virtual point lights (VPL) [Keller 1997] for global illumi-

nation. We show four direct illumination comparisons (Fig. 1, Fig. 4,

Fig. 6) and one VPL comparison (Fig. 5) in the main paper. Table 1

shows related statistics of these scenes. We include comparisons of

other scenes in the supplementary materials.

Hyperparameters. We set the learning rate 𝛼𝑡 for iteration 𝑡 to

1/𝛽𝑡𝜔 where 𝛽 = 4 and 𝜔 = 6/7. We divide the shading points

into 16384, 32768, or 65536 clusters according to their geometry
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complexity (Table 1). For direct illumination scenes, we set the

initial cut size to 4, and the maximum cut size to 64. For VPL scenes,

we set the initial cut size to 8, and the maximum cut size to 128. For

all scenes, we set the initial sampling budget 𝑛0 = 4 and set Γ = 128.

For other methods, we apply the default hyperparameters provided

by the authors.

6.2 Comparisons
The Bathroom scene (Fig. 1) contains a strong window light, four

hanging bright light bulbs, and some dim ceiling lights, makingmore

than 4𝐾 area lights in total. For the regions where the bright lights

are occluded, such as the walls, the light clustering constructed

using the error bound of lightcuts is sub-optimal because of not

taking visibility into account. Both reinforcement lightcuts learning

(RLL) and our method can learn to refine the light clustering based

on previous samples. However, RLL produces visual artifacts since

its sampling distribution does not converge to the target.

Fig. 4 shows the Bedroom scene and the Classroom scene. The

Bedroom scene has difficult visibility because most regions can

only receive illumination from a small group of lights. In this case,

the quality of light clustering will have a significant impact on the

rendering quality. The small bedside lamp highlighted in green

demonstrates such a case. Both Bayesian online regression and its

variance-aware version can only learn the sampling distribution of a

poor light clustering. Reinforcement lightcuts learning learns better

lightcuts but not as good as ours. The Classroom demonstrates a

case of uniform lighting. Both the ceiling lights and window lights

can contribute to most regions of the scene. In this case, our method

robustly achieves better image quality than all previous methods

across the whole image.

The Kitchen scene shown in Fig. 5 demonstrates the capability of

our method for handling virtual point lights (VPLs). We traced about

70𝐾 VPLs. Our method is only used for clustering and sampling

VPLs, while direct illumination is rendered with the default light

sampling approach implemented in PBRT. As shown in Fig. 5, on

the highlighted backlit and glossy surface, previous methods fail to

correctly cluster and sample the important VPLs, producing very

noisy images and spike artifacts. Our method can better locate,

refine and sample important VPL clusters. As a result, our method

significantly outperforms all other methods in terms of both visual

quality and relative mean squared error.

Multiple importance sampling before light selection. In the previ-

ous results, we apply BRDF importance sampling after a light is

selected, then combine the result using multiple importance sam-

pling (MIS). Alternatively, we can also sample the BRDF before a
light is selected. Table 2 shows a quantitative comparison of our

method with two MIS strategies on five scenes. We found that, for

our method, the better strategy is scene-dependent. We hypothe-

size that the magnitude of the contribution can lead to different

convergence, but we leave further investigation as future work. In

Fig. 6, we show the rendering results of the Parking-Lot scene. All

methods are combined with BRDF importance sampling before light

selection. Our method reduces the relative mean square error to an

order of magnitude compared to other methods.

Table 2. The relative mean square error of our method with two MIS strate-
gies: before and after light selection. The better one is highlighted in bold.

Scene before light selection after light selection

Bathroom 0.021 0.013
Bedroom 0.008 0.008
Classroom 0.012 0.013

Parking-Lot 0.047 0.079

Staircase2 0.004 0.003

RIS

rMSE:0.221

VA-BORAS

rMSE:0.480

RLL

rMSE:0.237

Ours

rMSE:0.047

Ref.

Fig. 6. Parking-Lot. Equal-time comparison (360s) with RIS [Bitterli et al.
2020; Talbot et al. 2005], VA-BORAS [Rath et al. 2020], RLL [Pantaleoni
2019] and our method combining with BRDF importance sampling before
selecting a light. Our method significantly outperforms other methods in
both visual quality and relative mean square error (rMSE).

Memory Consumption. The memory consumption of our method

in each scene is listed in Table 1. Each light cluster takes 16 bytes

to store the variance, second moment (for updating the variance),

visit count 𝑛𝑐 , and the importance𝑄𝑥
(𝑐). By contrast, a light cluster

in BORAS [Vévoda et al. 2018] takes 40 bytes in our implementa-

tion. Thus our method needs less memory for a single light cluster.

The overall memory consumption is proportional to the number of

shading point clusters and size of lightcuts.

6.3 Ablation Studies
Initial cut size. A crucial idea of our method is to start from a

coarse clustering and refine, so that we collect more reliable infor-

mation about the clusters. Fig. 7 shows that starting from a coarse

light clustering will accelerate variance reduction and result in a

relatively small but good light clustering.

Benefits of cluster refinement and constraints. We evaluate the

benefits of cluster refinement and having constraints that stop the
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100 150

32

64

𝑡

Avg.Clustering Size

c0=4

c0=16

c0=32

90 135 180

0.1

𝑡

rMAE

c0=4

c0=16

c0=32

Fig. 7. We compare the evolution of average clustering size and relative
mean absolute error (rMAE) for our method with different initial cut sizes
using the Bathroom scene. In the experiment, we constrain the maximum
cut size to be 64. With a smaller initial cut size, our method achieves a lower
error while avoiding unnecessary clustering.

45 90 135

15

30

𝑡

Avg.Clustering Size

W/O CR

W/ CR

W/ C-CR

45 90 135

0.1

0.2

𝑡

rMAE

W/O CR

W/ CR

W/ C-CR

Fig. 8. We compare the evolution of average clustering size, and relative
mean absolute error (rMAE) for our method without cluster refinement
(W/O CR), with cluster refinement (W/ CR), and with the constrained
cluster refinement (W/ C-CR), where we stop splitting when there is no
refinement for a while or when we reach a maximum cut size (Section 4.2).
We compare them using the Bathroom scene. We start from a light clus-
tering with |C0 |= 4. We set the maximum cut size as 32 and Γ = 128. The
cluster refinement indeed leads to lower error, while the constraints avoid
unnecessary clustering and also deliver slightly lower error.

refinement after reaching certain criteria in Fig. 8. We show that

the refinement is indeed helpful, and having the constraints helps

to avoid unnecessary clustering while delivering lower error.

Discussion with reinforcement lightcuts learning. Both our method

and reinforcement lighcuts learning (RLL) [Pantaleoni 2019] use data

to refine cluster and sample lights. Our contribution is the different

clustering rule (CR) and update rule (UR). RLL maintains a fixed

clustering size, and adjusts the clustering by splitting and merging

at the same time, while we adopt a coarse-to-fine strategy. RLL’s

update rule does not guarantee convergence, while our stochastic

approximation rule converges to the target. Fig. 9 compares the

effectiveness of the four combinations of our/RLL’s clustering rules

and update rules. The combination of our CR and UR leads to the

fewest image artifacts and the lowest rMSE. We found that the non-

converging RLL update rule often leads to image artifacts. Table 3

shows that this trend continues in other scenes. In scenes with

relatively few lights, such as the Living-Room scene (8) and the SiA-

shelf scene (16), RLL produces comparable results to our method.

However, when the number of lights increases, our method robustly

produces the best results than other methods.

CR: RLL RLL Ours Ours Ref.

UR: RLL Ours RLL Ours

rMSE: 0.024 0.021 0.030 0.013

Fig. 9. Ablation study with different combinations of clustering rule (CR)
and update rule (UR) of reinforcement lightcuts learning [Pantaleoni 2019]
and our method. The relative MSE (rMSE) of each combination is shown at
the bottom of the image. The combination of our CR and our UR leads to
the fewest image artifacts and the lowest rMSE.

Table 3. Relative mean square errors of the ablation study for combinations
of clustering rule (CR)/update rule (UR). The one with the smallest error is
highlighted in bold.

Scene RLL/RLL RLL/Ours Ours/RLL Ours/Ours

Bathroom 0.024 0.021 0.030 0.013
Bedroom 0.022 0.062 0.009 0.008
Classroom 0.046 0.034 0.015 0.013
Kitchen 0.404 0.491 0.091 0.050

Living-Room 0.006 0.005 0.018 0.005
Parking-Lot 0.237 0.076 0.232 0.047
SiA-Shelf 0.042 0.113 0.151 0.038
Sanmiguel 3.819 2.407 1.099 0.435
Staircase 0.013 0.009 0.007 0.007
Staircase2 0.006 0.005 0.004 0.003

7 LIMITATIONS AND FUTURE WORK
Sharp lighting edges. Most methods, including ours, use averaged

statistics over shading points to reduce computational cost. In the

presence of sharp lighting edges, this makes the sampling distribu-

tion suboptimal and leads to higher variance, and causes problems

to all methods. However, our clustering refinement will often detect

the high variance and put more samples on the lighting edges.

GPU implementation. While our algorithm is trivially paralleliz-

able, our current CPU implementation does not optimize for the

minimal thread divergence on a SIMD unit. An efficient GPU im-

plementation may require different data structures and design deci-

sions [Bitterli et al. 2020; Lin and Yuksel 2020; Moreau et al. 2019;

Pantaleoni 2019]. For real-time rendering of dynamic lights, adapt-

ing the hierarchy over time also introduces extra overhead.

Shading point clustering. While we use a data-driven method to

learn light clustering, we do not learn the shading point clustering

and rely on heuristics. Learning shading point clustering can be

crucial for scenes with very complex geometry and materials.
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8 CONCLUSION
We have presented an unbiased and progressive light sampling

method that can adapt both the clustering and the sampling distri-

butions using collected samples. The key ideas are a coarse-to-fine

clustering scheme and a stochastic approximation algorithm for

updating the sampling distribution, that can provably converge to

the target distribution. Our method is robust to both simple and

difficult configurations and introduces minimal overhead. By com-

bining with bidirectional path tracing [Popov et al. 2015] and path

guiding, our method can potentially be a crucial component inside

a fully data-driven importance sampled rendering algorithm.
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A STOCHASTIC LIGHTCUTS
Ourmethod contains some components from the stochastic lightcuts

algorithm [Yuksel 2019]. For completeness we will describe it here.

Given a shading point and a node on the light hierarchy, we want

to sample a light inside the node. We do it by traversing the light

hierarchy, each time randomly picking one of the children until we

reach the leaf. Stochastic lightcuts evaluates an estimation of the

upper bound 𝐿𝑢 for both of the children of a node to determine the

probability of sampling. The upper bound 𝐿𝑢 is estimated by:

𝐿𝑢 (𝑥, 𝑐) =

𝐺𝑢 (𝑥, 𝑐)𝑀𝑢 (𝑥, 𝑐)𝐼𝑐

Λ(𝑥, 𝑐)
, (12)

where𝐺𝑢 (𝑥, 𝑐) is the upper bound of the geometry term without the

distance squared term,𝑀𝑢 (𝑥, 𝑐) is an upper bound of the materials

(Walter et al. [2005] describe how to compute 𝐺𝑢 (𝑥, 𝑐) and𝑀𝑢 (𝑥, 𝑐)

for Lambertian, Phong, and Ward BRDFs [Walter 2005], and there

are ways to bound them for certain shaders [Velázquez-Armendáriz

et al. 2009; Walter et al. 2012]), 𝐼𝑐 is the total intensity of lights inside

the cluster, and Λ(𝑥, 𝑐) is the attenuation term:

Λ(𝑥, 𝑐) =

{
1

𝑑min
(𝑥,𝑐)

2
if 𝑑min

(𝑥, 𝑐) > 𝑙𝑐 & 𝑑min
(𝑥, 𝑐 ′) > 𝑙

𝑐 ′

1 otherwise,
(13)

where 𝑑min
(𝑥, 𝑐) is the minimal distance from 𝑥 to the bounding

box of cluster 𝑐 , 𝑐 ′ is the sibling of the cluster 𝑐 which shares the

same parent, and 𝑙𝑐 and 𝑙
𝑐 ′ are the length of the diagonal of the

bounding boxes of the corresponding clusters. The attenuation term

is designed to eliminate the singularity of the error bound when the

point 𝑥 is inside or very close to a cluster’s bounding box.

B CONNECTION OF OUR UPDATE RULE TO
STOCHASTIC APPROXIMATION

Classical stochastic approximation theory [Robbins and Monro

1951] shows that the following update rule converges with proba-

bility 1 to the root 𝜃∗ of a nondecreasing function 𝑓 under a zero-
mean noise 𝜖𝑛 with both bounded mean and variance, if 𝑓 ′(𝜃∗) > 0,∑∞
𝑡=1

𝛼𝑡 = ∞ and

∑∞
𝑡=1

𝛼2

𝑡 < ∞:
𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑡 (𝑓 (𝜃𝑡 ) + 𝜖𝑛). (14)

If we set 𝜃𝑡 = 𝑄𝑥
𝑡 (𝑐) and 𝑓 (𝜃 ) = 𝜃−𝐹𝑐 (𝑥 ), the equation above becomes

our update rule (Equation (6)), and the root of the function 𝑓 is 𝐹𝑐 (𝑥 ).

Furthermore, since the statement above applies individually to each

element of the table, the distance between the table and the target∑
𝑐 |𝑄𝑥

(𝑐)−𝐹𝑐 (𝑥 )| scales linearly with the dimensionality of the table.

It is also known that the expected difference between 𝑄𝑥
𝑡 (𝑐) and the

root 𝐹𝑐 scales linearly with the variance of the noise 𝜖𝑛 [Bottou et al.

2018].

C INITIALIZATION AFTER SPLITTING A CLUSTER
It can be shown that after 𝑡 iterations our importance table is:

𝑄𝑥
𝑡 (𝑐) =

(
𝑡∏
𝑖=1

(1 − 𝛼𝑖 )
)
𝐿𝑢 (𝑥, 𝑐) +

𝑡∑
𝑗=1

𝛼 𝑗

(
𝑡∏

𝑖=𝑗+1

(1 − 𝛼𝑖 )
)
⟨𝐹𝑐 (𝑥 )⟩𝑗 .

(15)

Our learning rate is a monotonically decreasing sequence 𝛼𝑡 =
1

𝛽𝑡𝜔
.

We approximate the product as

∏𝑡
𝑖=1

(1−𝛼𝑖 ) ≈ (1−𝛼𝑡 )
𝑡
. Equation (15)

is then approximated as:

𝑄𝑥
𝑡 (𝑐) ≈ (1 − 𝛼𝑡 )

𝑡𝐿𝑢 (𝑥, 𝑐) +

(
1 − (1 − 𝛼𝑡 )

𝑡 ) ⟨𝐹𝑐 (𝑥 )⟩ (16)

For the two children 𝑐1 and 𝑐2, we then need to know approximately

how many times they have been visited. Since we use stochastic

lightcuts for sampling the children, we know that on expectation 𝑛𝑐1

and 𝑛𝑐2
are proportional to their error bound 𝐿𝑢 (𝑥, 𝑐1) and 𝐿𝑢 (𝑥, 𝑐2).

Therefore, for children 𝑐1 we approximate its visited count 𝑛𝑐1
≈

𝐿𝑢 (𝑥,𝑐1)

𝐿𝑢 (𝑥,𝑐1)+𝐿𝑢 (𝑥,𝑐2)
𝑛𝑐 , where 𝑛𝑐 is the visit count of its parent. The

initialized Q value is then:

𝑄𝑥
𝑡 (𝑐1)← (1 − 𝛼𝑡 )

𝑛𝑐
1𝐿𝑢 (𝑥, 𝑐) +

(
1 − (1 − 𝛼𝑡 )

𝑛𝑐
1

)
𝑄𝑥
𝑡 (𝑐). (17)
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