Interactive Comparison on Middlebury 2014 Data
Image viewer is borrowed from this page.
All results are generated on a machine with Intel Core i5-7400K at 3.0 GHz, 16-GB of RAM, and an NVIDIA GeForce GTX 2080 Ti graphics card.
Scenes (click on the thumbnail to select the scene comparison shown at the bottom of the page)
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
input A input B |
Compared Methods
Multi-Res. Joint Bilateral Upsampling (M-JBU) [Richardt et al. 2012]
Fast Bilateral Solver (FBS) [Barron and Poole 2016]
Multi-Res. Shared Representative Filtering (M-SRF) [Our method]
Implementation and Time Budgets
Multi-Res. Joint Bilateral Upsampling [Richardt et al. 2012] and our method are implemented with Unity shaders, running on GPU. We allocated 20 ms. as time budget to complete the depth map.
For Fast Bilateral Solver [Barron and Poole 2016], we use the authors' CPU python implementation. It takes about 1200 ~ 2000 ms.
Mean Absolute Error (MAE) and Peak Signal-to-Noise Ratio (PSNR)
Method | M-JBU | FBS | M-SRF |
MAE | 0.0260 | 0.0258 | 0.0204 |
PSNR | 31.93 | 33.92 | 36.13 |