Supplementary Material for Efficient Environment Map Rendering based on Decomposition

Yu-Ting Wu^{†1}

¹ yutingwu@mail.ntpu.edu.tw , National Taipei University, Taiwan

This document presents additional results generated using various configurations of our method as well as more comparisons to previous methods, including multiple importance sampling [VG95] (MIS, using PBRT3's implementation [PJH16]), fast hierarchical importance sampling (FHIS) [ODJ04], median cut (MC) [Deb05], a variant of median cut based on variance minimization (VM) [VD09], and a method based on tone-mapped mean-shift (TMMS) [FYWY16]. For our method, we also include a version, denoted as Ours (w/o U), which renders the low-frequency component at the original resolution.

Results of decomposition. Fig. 1 illustrates the intermediate results of high-frequency and low-frequency components rendered by our method. Both components closely resemble the reference images visually.

Variants for generating *EnvIndirects*. To demonstrate the effectiveness of our modified illumination cut, as described in Section 3.4 in the main paper, we compared our method with a variant using the original illumination cut [CPWAP08] to generate *EnvIndirects*. Table 1 presents the average errors across 32 environment maps and four test scenes. Our modified algorithm significantly reduces numerical errors compared to the original version by considering the total energy and the directional extent during cluster generation.

Method for <i>EnvIndirects</i>	RMSE↓	\downarrow qIJF
Original Illumination Cut	0.0671	0.1280
Modified Illumination Cut	0.0438	0.0865

Table 1: Ablation studies of using various illumination cut algorithms to generate *EnvIndirect*. The RMSE and FLIP values, averaged across 32 environment maps and 4 test scenes, demonstrate that our modified illumination cut for *EnvIndirect* produces significantly lower errors compared to the original method.

Interleaved sampling. Rendering with a global set of representative lights can produce noticeable artifacts near shadow boundaries. We use interleaved sampling to convert these artifacts into minor noise. Fig. 2 compares the rendered images with and without interleaved sampling. For VM, TMMS, and our method, interleaved sampling mitigates image errors and enhances the visual quality of the rendered images. More comparisons. Table 2 and Table 3 present the RMSE and FLIP [ANSAM21] comparisons of various methods. Each method is evaluated using 4 test scenes rendered with 32 environment maps, as detailed in the main paper. The reported numbers for each environment map are the averages of the RMSE and FLIP values across the 4 test scenes. Additionally, the table includes the ranking of each method among the 7 compared methods in brackets. Our full method, which includes upsampling the low-frequency component, achieves the lowest average errors and demonstrates robust performance across the 32 diverse test cases. Fig. 3 to Fig. 6 provide image comparisons. In these images, our method exhibits significantly less noise and fewer artifacts than previous methods. It is important to note that the RMSE and FLIP values for each case in Table 2 and Table 3 are averaged across the four test scenes and, therefore, differ from the values labeled on the images shown in Fig. 3 to Fig. 6, which are measured per image.

References

- [ANSAM21] ANDERSSON P., NILSSON J., SHIRLEY P., AKENINE-MÖLLER T.: Visualizing Errors in Rendered High Dynamic Range Images. In *Eurographics Short Papers* (2021). doi:10.2312/egs. 20211015.1
- [CPWAP08] CHESLACK-POSTAVA E., WANG R., AKERLUND O., PEL-LACINI F.: Fast, realistic lighting and material design using nonlinear cut approximation. In ACM Trans. Graph. (Proc. SIGGRAPH Asia) (2008). doi:10.1145/1457515.1409081.1
- [Deb05] DEBEVEC P.: A median cut algorithm for light probe sampling. In SIGGRAPH Poster (2005). doi:10.1145/1186954.1187029. 1
- [FYWY16] FENG W., YANG Y., WAN L., YU C.: Tone-mapped meanshift based environment map sampling. *IEEE Trans. on Visualization* and Computer Graphics 22, 9 (2016), 2187–2199. doi:10.1109/ TVCG.2015.2500236.1
- [ODJ04] OSTROMOUKHOV V., DONOHUE C., JODOIN P.-M.: Fast hierarchical importance sampling with blue noise properties. *ACM Trans. Graph. (Proc. SIGGRAPH) 23*, 3 (aug 2004), 488–495. doi: 10.1145/1015706.1015750.1
- [PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based Rendering: From Theory to Implementation, 3rd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, Nov. 2016. 1
- [VD09] VIRIYOTHAI K., DEBEVEC P.: Variance minimization light probe sampling. In SIGGRAPH Poster (2009). doi:10.1145/ 1599301.1599393.1

Yu-Ting Wu / Environment Lighting Decomposition

Our auto-classified emissive / non-emissive mask

Our method (emissive), 7 lights Our method (non-emissive), 27 lights

Our method (full), 34 lights

Figure 1: **Our decomposition result.** The top row shows our manually labeled emissive and non-emissive pixels alongside the results rendered by converting these pixels into numerous lights. The bottom row shows our automatic classified mask and the rendered results, which take 4 seconds. Our method accurately approximates both high-frequency and low-frequency components.

Figure 2: **Comparisons of rendered results with and without interleaved sampling.** The top row shows images rendered without interleaved sampling, while the bottom row shows images rendered with interleaved sampling. Using interleaved sampling significantly reduces shadow boundary artifacts, although it introduces slight image noise.

Yu-Ting Wu / Environment Lighting Decomposition

Figure 3: More comparisons of various environment map sampling methods on the 1st scene.

Yu-Ting Wu / Environment Lighting Decomposition

Figure 4: More comparisons of various environment map sampling methods on the 2^{nd} scene.

Yu-Ting Wu / Environment Lighting Decomposition

Autumn Meadow		MIS	FHIS	МС	VM	TMMS	Ours (w/o U)	Ours	REF
		S.C.	X	a	X	Ja	X	X	X
		\mathcal{O}	M.		171	51	ML:	M.	The
		Toma .	Calman	Charles and	Cara	Calter	Colum	Come	Coloran
		The second	- me			and and			
			2 and	al and				al and the	a sector
	RMSE↓ TLIP⊥	0.0463 0.0561	0.0436 0.1370	01068 0.2510	0.0723 0.1451	0.0412 0.1533	0.0162 0.0726	0.0178 0.0519	
Cape Hill	¥	MIS	FHIS	MC	VM	TMMS	Ours (w/o U)	Ours	REF
and the second second									
aller "								X	
							36.2.3		
						2	7	28	
CERT AS DESKO		1 Alexandre	1.12	63	ANX.	(a)	600	1 miles	1000
	RMSE↓	0.0166	0.0345	0.0352	0.0431	0.0121	0.0078	0.0069	
	¢קווד	0.0627	0.3492	0.2767	0.2119	0.1316	0.0917	0.0523	DEE
Mosaic Tunnel		MIS	FHIS	MC	VM	TMMS	Ours (w/o U)	Ours	REF
	- 615								
	17	Ye			0			So.	Ca.
						ST			
					vden i	ST.			
						The last			
	RMSE1	0.0441	0.0277	0.0234		0.0226	0.0121	6.0094	
	RMSE↓ FLIP↓	0.0441 0.1773	0.0277 0.3429	0.0234 0.3343	0.0411 0.2877	0.0226 0.3364	0.0121 0.1453	0.0094 0.1214	
Viale Giuseppe Garibaldi	RMSE↓ FILIP↓	0.0441 0.1773 MIS	0.0277 0.3429 FHIS	0.0234 0.343 MC	0.0411 0.2877 VM	0.0226 0.3364	0.0121 0.1453	0.0094 0.1214 Ours	
Viale Giuseppe Garibaldi	RMSE↓ FLIP↓	0.0441 0.1773 MIS	0.0277 0.3429 FHIS	0.0234 0.3343 MC	0.0411 0.2877 VM	0.0226 0.3364 TMMS	0.0121 0.1453 Ours (w/o U)	0.0094 0.1214 0urs	REF
Viale Giuseppe Garibaldi	RMSE↓ FLIP↓	0.0441 0.1773 MIS	 Solution Solution<	0.0234 0.3343 MC	0.0411 0.2877 VM	0.0226 0.3364 TMMS	0.0121 0.1453 Ours (w/o U)	0.0094 0.1214 Ours	REF
Viale Giuseppe Garibaldi	RMSE↓ FLIP↓	0.0441 0.1773 MIS	0.0277 0.3429 FHIS	0.0234 0.0234 0.343 MC	0.0411 0.2877 VM	0.0226 0.3364 TMMS	0.0121 0.1453 Ours (w/o U)	0.0094 0.1214 0urs	REF
<image/> <section-header></section-header>	RMSE↓ FILIP↓	0.0441 0.1773 MIS	0.0277 0.3429 FHIS	0.0234 0.0234 0.3343 MC	0.0411 0.2877 VM	0.0226 0.364 TMMS	0.0121 0.1453 0.0urs (w/o U)	0.0094 0.1214 Ours	REF
Viale Giuseppe Garibaldi	RMSE1 FLIPJ	0.0441 0.1773 MIS	 Solution Solution<	0.0234 0.343 MC	0.0411 0.2877 VM	0.0226 0.3364 TMMS	0.0121 0.1453 Ours (w/o U)	0.0094 0.1214 Ours	REF
<image/> <section-header></section-header>	RMSE↓ FLIP↓	0.0441 0.1773 MIS	0.0277 0.3429 FHIS	0.0234 0.3343 MC	0.0411 0.2877 VM	0.0226 0.3364 TMMS	 	0.0094 0.1214 0urs	REF
<image/> <section-header></section-header>	RMSE↓ FILIP↓	0.0441 0.1773 MIS	0.0277 0.3429 FHIS	0.0234 0.0234 0.343 MC	0.0411 0.2877 VM	0.0226 0.3364 TMMS	0.0121 0.0123 0.01453 Ours (w/o U)	0.0094 0.1214 Ours 0.005 0.0094 0.1214	REF

Figure 5: More comparisons of various environment map sampling methods on the 3rd scene.

submitted to COMPUTER GRAPHICS Forum (8/2024).

Yu-Ting Wu / Environment Lighting Decomposition

Birbeck Street Underpass		MIS	FHIS	MC	VM	TMMS	Ours (w/o U)	Ours	REF
							(Carlos)		Carlos and
met	- Alexandre	Ċ	6	Ó	Ó	Ó	Ó	Ó	Ó
SR ANT THE LAND									
	A CARLER							18.10	
			- 5	-				- 5	
			Dis			DE			
C The Fth	RMSE	0.1757	0.1333	0.0900	0.0697	0.0769	0.0770	0.0433	
	TLIP↓	0.1487	0.1954	0.1199	0.1051	0.1549	0.0982	0.0811	
Factory Yard		MIS	FHIS	MC	VM	TMMS	Ours (w/o U)	Ours	REF
		A.	20×	2	2	2	1	194	2
		R. F. Martine		3r	- the	- al	ar		and
		Construction of the second						-	Se de
				1//					
CARES-		777	27	M	200		27	27	1
C The The	DMCE	0.1270	0.0820	0.1759	0 1540	0.1520	0.0660	0.0705	E h
	KMSE↓ TLIP↓	0.1370	0.0820 0.1084	0.1758	0.1309	0.1529	0.0889	0.0795 0.0739	
Hikers Cave		MIS	FHIS	MC	VM	TMMS	Ours (w/o U)	Ours	REF
				2					
			-7-				-7-		-
		1	D V D						
TATA	Th		I h	J	JA				M
	RMSE↓ TL ID↓	0.0491	0.0556	0.0495	0.0352	0.0545	0.0370	0.0244	
Kiara 1 Dawn	ΊLIP↓	0.1125 MIS	0.1854 FHIS	0.3170 MC	0.1719 VM	0.2050 TMMS	0.1490 Ours (w/o1)	Ours	REF
						Mall			
		4N	ELDR.	1 N	S-K	and the	FR	-R	- And
			SAP)	1 A	1	7 3		2/37	2
	13			- ar	The set	-ar			a ser
									化的 作为于
AAAA	T-J	A	11						
	RMSE↓	0.1334	0.1539	0.1026	0.1762	0.1127	0.0862	0.0772	
	TT TD I	0.0794	0 2050	0 1622	0 1427	0 1409	0 1127	0.0700	

Figure 6: More comparisons of various environment map sampling methods on the 4th scene.

Yu-Ting Wu	/ Environment	Lighting	Decomposition
------------	---------------	----------	---------------

Environment man	MIS	FHIS	MC	VM	TMMS	Ours	Ours
Environment map		11115	inc.		1111110	(w/o U)	(w/U)
[01] Art Studio	0.1781 (7)	0.1427 (6)	0.0598 (3)	0.0637 (4)	0.0891(5)	0.0547 (2)	0.0356(1)
[02] ARTIST WORKSHOP	0.0728(7)	0.0409 (3)	0.0465 (4)	0.0646(5)	0.0722(6)	0.0328 (2)	0.0240(1)
[03] AUTUMN MEADOW	0.0701 (4)	0.0750(5)	0.1566(7)	0.1379(6)	0.0595(3)	0.0316(2)	0.0270(1)
[04] BASEMENT BOXING RING	0.2634(6)	0.2690(7)	0.1163 (5)	0.1033 (3)	0.1069(4)	0.0737 (2)	0.0551(1)
[05] BIRBECK STREET UNDERPASS	0.1874 (7)	0.1094 (6)	0.0687 (4)	0.0636(3)	0.0705 (5)	0.0520(2)	0.0324 (1)
[06] BLUE PHOTO STUDIO	0.3043 (7)	0.2460(6)	0.1149 (4)	0.1178 (5)	0.1133 (3)	0.0582(2)	0.0580(1)
[07] BROWN PHOTOSTUDIO 07	0.1033 (4)	0.2119(7)	0.0852(3)	0.1227 (6)	0.1107 (5)	0.0691 (2)	0.0523 (1)
[08] CAPE HILL	0.0259 (4)	0.0479 (5)	0.0639(6)	0.0816(7)	0.0224(3)	0.0158 (2)	0.0141 (1)
[09] CAVE WALL	0.1431 (7)	0.0378 (5)	0.0339 (4)	0.0396(6)	0.0315(3)	0.0313 (2)	0.0164 (1)
[10] CAYLEY INTERIOR	0.2099(6)	0.3328(7)	0.0623 (4)	0.0648(5)	0.0589(3)	0.0359(2)	0.0343 (1)
[11] CAYLEY LOOKOUT	0.1195 (7)	0.0532(2)	0.0550(5)	0.0535 (3)	0.0547 (4)	0.0569(6)	0.0383 (1)
[12] CHRISTMAS PHOTO STUDIO 01	0.0908(6)	0.1430(7)	0.0601 (3)	0.0891 (5)	0.0655(4)	0.0522(2)	0.0368 (1)
[13] DERELICT UNDERPASS	0.1507 (7)	0.0861 (3)	0.1129 (5)	0.0870(4)	0.1132(6)	0.0724 (2)	0.0471 (1)
[14] DRACHENFELS CELLAR	0.0883 (6)	0.0562 (4)	0.0440(3)	0.1015(7)	0.0616(5)	0.0254(2)	0.0202 (1)
[15] DRESDEN STATION NIGHT	0.4167 (6)	0.5772(7)	0.1641 (4)	0.2436(5)	0.1450(2)	0.1464 (3)	0.0946(1)
[16] FACTORY YARD	0.1619(6)	0.0855 (3)	0.1087 (4)	0.1162(5)	0.1696(7)	0.0697 (1)	0.0707 (2)
[17] FIRE PLACE	0.0661 (7)	0.0532(6)	0.0508 (5)	0.0286(3)	0.0354(4)	0.0216(2)	0.0176(1)
[18] GRAFFITI SHELTER	0.2606(7)	0.1742 (5)	0.1351 (4)	0.2135 (6)	0.1194(3)	0.0959(2)	0.0680(1)
[19] HIKERS CAVE	0.0787(6)	0.0970(7)	0.0596(4)	0.0542(3)	0.0653(5)	0.0492(2)	0.0315(1)
[20] INDUSTRIAL PIPE AND VALVE 02	0.1287 (6)	0.1561 (7)	0.0498 (4)	0.0453 (3)	0.0763 (5)	0.0397 (2)	0.0353 (1)
[21] KIARA 1 DAWN	0.1676(6)	0.2033 (7)	0.1256(3)	0.1416(5)	0.1406(4)	0.1018 (2)	0.0725 (1)
[22] LAPA	0.2523 (7)	0.1015 (5)	0.0958 (4)	0.1168 (6)	0.0872(3)	0.0698(2)	0.0569(1)
[23] LYTHWOOD LOUNGE	0.2957 (7)	0.1547 (5)	0.1440(4)	0.1390(3)	0.2208 (6)	0.0973 (2)	0.0659(1)
[24] MOSAIC TUNNEL	0.0775 (6)	0.0499 (5)	0.0383 (3)	0.0861 (7)	0.0383(3)	0.0259(2)	0.0203 (1)
[25] NEUER ZOLLHOF	0.0707 (5)	0.1519(7)	0.0665 (4)	0.1127 (6)	0.0422(3)	0.0340(1)	0.0343 (2)
[26] PINE ATTIC	0.2607 (7)	0.1741 (5)	0.0827 (3)	0.0902(4)	0.2312(6)	0.0655(2)	0.0453 (1)
[27] RED WALL	0.1779(7)	0.1705 (6)	0.0835 (3)	0.0919(4)	0.1154(5)	0.0745 (2)	0.0575 (1)
[28] STUDIO SMALL 05	0.1235 (6)	0.0808 (5)	0.0608 (4)	0.1522(7)	0.0290(2)	0.0354(3)	0.0243 (1)
[29] SUNSET IN THE CHALK QUARRY	0.0805(7)	0.0723 (6)	0.0716(5)	0.0702 (4)	0.0675(3)	0.0570(2)	0.0367 (1)
[30] TEUFELSBERG LOOKOUT	0.3392 (6)	0.5056(7)	0.1854 (4)	0.1913 (5)	0.1425 (3)	0.1256(2)	0.0949(1)
[31] VENETIAN CROSSROADS	0.0231 (1)	0.1678 (7)	0.1024 (5)	0.1222 (6)	0.0248(2)	0.0297 (3)	0.0307 (4)
[32] VIALE GIUSEPPE GARIBALDI	0.0655(4)	0.2019(7)	0.1147 (6)	0.1065 (5)	0.0559(3)	0.0517(2)	0.0515(1)
Average	0.1579	0.1572	0.0881	0.1035	0.0886	0.0579	0.0438
	(6.00)	(5.63)	(4.16)	(4.88)	(4.00)	(2.16)	(1.16)

Table 2: **RMSE values of various environment map sampling methods on all test environment maps.** Our full method achieves the lowest and most stable RMSE compared to previous methods.

[VG95] VEACH E., GUIBAS L. J.: Optimally combining sampling techniques for monte carlo rendering. In *Proc. SIGGRAPH* (1995), p. 419–428. doi:10.1145/218380.218498.1

submitted to COMPUTER GRAPHICS Forum (8/2024).

7 of 8

Yu-Ting Wu / Environment Lighting Decomposition

Environment map	MIS	FHIS	MC	VM	TMMS	Ours	Ours
L						(w/o U)	(w/U)
[01] ART STUDIO	0.0881 (2)	0.1742(7)	0.1127 (5)	0.1017 (4)	0.1521(6)	0.0987 (3)	0.0654(1)
[02] ARTIST WORKSHOP	0.0804 (2)	0.1163 (4)	0.1516(6)	0.1418 (5)	0.1975(7)	0.1084 (3)	0.0789(1)
[03] AUTUMN MEADOW	0.0840(2)	0.1731 (4)	0.3114(7)	0.1749 (5)	0.1919(6)	0.1083 (3)	0.0721 (1)
[04] BASEMENT BOXING RING	0.1219 (4)	0.1912(7)	0.1262(5)	0.0998 (3)	0.1316(6)	0.0893 (2)	0.0739(1)
[05] BIRBECK STREET UNDERPASS	0.1304 (5)	0.1663 (7)	0.1103 (4)	0.1009(3)	0.1388(6)	0.0905(2)	0.0705 (1)
[06] BLUE PHOTO STUDIO	0.1110(3)	0.2187 (7)	0.1243 (5)	0.1119 (4)	0.1404 (6)	0.0765 (2)	0.0731 (1)
[07] BROWN PHOTOSTUDIO 07	0.0695 (1)	0.3537 (7)	0.1447 (5)	0.1404 (4)	0.1588(6)	0.1134 (3)	0.0792(2)
[08] CAPE HILL	0.0830(2)	0.3487 (7)	0.3251 (6)	0.2197 (5)	0.1601 (4)	0.1128 (3)	0.0691 (1)
[09] CAVE WALL	0.0558 (5)	0.0797 (7)	0.0537 (2)	0.0547 (3)	0.0559(6)	0.0547 (3)	0.0332 (1)
[10] CAYLEY INTERIOR	0.1577 (3)	0.3951 (7)	0.2056(6)	0.1783 (5)	0.1713 (4)	0.1069(2)	0.0943 (1)
[11] CAYLEY LOOKOUT	0.0492 (2)	0.0835 (5)	0.0716(3)	0.0741 (4)	0.0857(6)	0.0898 (7)	0.0457 (1)
[12] CHRISTMAS PHOTO STUDIO 01	0.1104 (2)	0.2146 (6)	0.1899 (4)	0.2020(5)	0.2824(7)	0.1483 (3)	0.1057 (1)
[13] DERELICT UNDERPASS	0.0722 (2)	0.1125 (5)	0.1216(6)	0.1009 (4)	0.1342(7)	0.0861 (3)	0.0627 (1)
[14] DRACHENFELS CELLAR	0.1825 (3)	0.2741 (6)	0.2356 (5)	0.2338 (4)	0.3702(7)	0.1474 (2)	0.1114 (1)
[15] DRESDEN STATION NIGHT	0.1668 (5)	0.2038 (7)	0.1360(3)	0.1423 (4)	0.1754(6)	0.1249 (2)	0.0715 (1)
[16] FACTORY YARD	0.0724 (2)	0.0921 (4)	0.1009 (5)	0.1056(6)	0.1483 (7)	0.0833 (3)	0.0615 (1)
[17] FIRE PLACE	0.1526 (4)	0.2220(7)	0.2111 (6)	0.1249 (3)	0.1561 (5)	0.1240(2)	0.0878 (1)
[18] GRAFFITI SHELTER	0.1870 (3)	0.2774 (7)	0.2117 (4)	0.2396 (6)	0.2276(5)	0.1663 (2)	0.1180(1)
[19] HIKERS CAVE	0.1044 (2)	0.2028 (5)	0.2551 (7)	0.1559 (4)	0.2383 (6)	0.1503 (3)	0.1030(1)
[20] INDUSTRIAL PIPE AND VALVE 02	0.1978 (5)	0.4379 (7)	0.1829 (4)	0.1510(3)	0.3045 (6)	0.1462 (2)	0.1321 (1)
[21] KIARA DAWN	0.0687 (2)	0.1916(7)	0.1349 (6)	0.1224 (4)	0.1322 (5)	0.1066 (3)	0.0682(1)
[22] LAPA	0.1966 (5)	0.2185 (6)	0.2232(7)	0.1566 (3)	0.1847 (4)	0.1206(2)	0.0937 (1)
[23] LYTHWOOD LOUNGE	0.1213 (2)	0.1319 (4)	0.1567 (6)	0.1458 (5)	0.2557 (7)	0.1304 (3)	0.0804 (1)
[24] MOSAIC TUNNEL	0.2054 (3)	0.3948 (7)	0.3512(6)	0.2896 (4)	0.3330(5)	0.1774 (2)	0.1466 (1)
[25] NEUER ZOLLHOF	0.1206 (2)	0.1956 (6)	0.2182(7)	0.1927 (5)	0.1680(4)	0.1336(3)	0.0997 (1)
[26] PINE ATTIC	0.1300 (5)	0.1535 (6)	0.1127 (4)	0.0876(3)	0.2477 (7)	0.0846(2)	0.0621 (1)
[27] RED WALL	0.0984 (2)	0.1959 (7)	0.1123 (3)	0.1272 (5)	0.1697(6)	0.1225 (4)	0.0786 (1)
[28] STUDIO SMALL 05	0.1272 (2)	0.1769(6)	0.1884 (7)	0.1468 (4)	0.1679(5)	0.1316(3)	0.1031 (1)
[29] SUNSET IN THE CHALK QUARRY	0.0565 (1)	0.1185 (7)	0.0997 (3)	0.1018 (4)	0.1151(6)	0.1103 (5)	0.0576(2)
[30] TEUFELSBERG LOOKOUT	0.1339 (2)	0.2483 (7)	0.1684 (5)	0.1639 (4)	0.1796(6)	0.1411 (3)	0.0970(1)
[31] VENETIAN CROSSROADS	0.1257 (2)	0.2622 (5)	0.3389(7)	0.2824 (6)	0.2013 (4)	0.1263 (3)	0.0923 (1)
[32] VIALE GIUSEPPE GARIBALDI	0.2177 (3)	0.4681 (7)	0.3347 (6)	0.2762 (4)	0.2873 (5)	0.2015 (2)	0.1789(1)
Average	0.1212	0.2217	0.1819	0.1546	0.1895	0.1191	0.0865
	(2.81)	(6.19)	(5.16)	(4.22)	(5.72)	(2.81)	(1.06)

Table 3: **TLIP values of various environment map sampling methods on all test environment maps.** Our full method achieves the lowest and most stable **TLIP** errors compared to previous methods.